# The New York Times Building New York, NY



IPD/BIM Thesis Technical Report #3

Andres R. Perez Structural Option – Team #3

Faculty Consultant: Dr. Andres Lepage December 7<sup>th</sup>, 2009

## Table of Contents

| Table of Contents                                                        |    |
|--------------------------------------------------------------------------|----|
| Executive Summary                                                        |    |
| Introduction                                                             |    |
| Existing Structural System Description                                   | 6  |
| Existing Lateral System                                                  |    |
| Design Parameters                                                        | 11 |
| Design Codes and References                                              |    |
| LRFD Design Load Combinations (ASCE 7-05)                                |    |
| Drift Criterion                                                          |    |
| Stiffness Modification                                                   |    |
| Design Loads                                                             |    |
| Gravity Loads                                                            |    |
| Wind Loads                                                               |    |
| Seismic Loads                                                            |    |
| Alternative Lateral System Design                                        |    |
| Design Assumptions                                                       |    |
| Initial Sizing of Shear Walls                                            |    |
| Shear                                                                    |    |
| Overall Wind Drift                                                       |    |
| Moment Capacity                                                          |    |
| ETABS Model                                                              |    |
| Model Verification                                                       |    |
| Relative Stiffness Comparison                                            |    |
| Center of Rigidity                                                       |    |
| Concrete Shear Wall Core Design Summary                                  |    |
| Modified Braced Frame Core Design Summary                                |    |
| IPD/BIM Team Comparison                                                  |    |
| Conclusion                                                               |    |
| Appendix A – Typical Framing Plan                                        |    |
| Appendix B – Alternative Design Elevations (Concrete Core w/ Outriggers) |    |
| Appendix C – Wind Load Calculation                                       |    |
| Appendix D – Seismic Load Calculation                                    |    |
| Appendix E – Initial Rough Hand Calculations                             |    |
| Appendix E – Shear Wall Spot Checks                                      |    |
| Appendix F – ETABS Output for Case 2 Wind                                |    |

The New York Times Building New York, NY Technical Report #3

### **Executive Summary**

In the third technical report of the New York Times Building, three alternatives to the existing lateral force resisting system were investigated and designed in a preliminary manner. Each one of these designs was developed by each structural student participating in the alternative IPD/BIM Thesis in order to compare the feasibility of three different alternatives to the existing lateral system. The three systems which were investigated are as follows:

- Modified Braced Frame Core w/ outriggers at the 36<sup>th</sup> floor
- Pure Concrete Shear Wall Core
- Concrete Core w/ outriggers at the 28<sup>th</sup> and 51<sup>st</sup> floors

The alternative that was investigated in this report was the concrete core with outriggers system. A modified braced frame core and pure concrete shear wall core were investigated in the technical reports of Erika Bonfanti and Benjamin Barben respectively. Each of the alternatives systems were designed to fall within 10% of the existing period of vibration, 6.75s - 6.25s. Also, an overall building deflection due to wind of H/450, that of the existing structure, was not exceeded by any of the three alternative systems.

The design of the concrete shear wall with outriggers alternative resulted in four 65' long walls in the East/West direction and sixteen 18" returns in the North/South direction. Also, the thickness of the 65' long shear walls decreases from 16" to 14" on the 30<sup>th</sup> Level. The concrete compressive strength changes from 10,000 psi to 8,000 psi at Level 30, from 8,000 psi to 6,000 psi at Level 40, and then from 6,000 psi back to 8,000 psi at Level 50. This alternative system also utilized W14 braces and W18 beams in the design of the outriggers.

After the three alternative designs were completed, they were presented to the other members of Team 3 in order to determine their feasibility. The modified braced frame system was found to be infeasible because of the design would lead to a single mechanical floor on the outrigger level. A single mechanical floor on the 36<sup>th</sup> Level would not facilitate the required floors with heating, ventilating, and cooling in an energy efficient manner.

Because the layouts of the two concrete systems are very similar, their feasibility was discussed by the team simultaneously. Though an attempt was made by both designs to conform to the architectural layout of the existing core, it was determined that they do infringe upon the architecture on the First Floor where shear walls were required to be placed into the central corridor of the lobby. Also, the core layouts do not allow for the increase in rentable space provided by the existing lateral system in the Forest City Ratner portion of the tower. Therefore, it was concluded that if a concrete core alternate is to be optimized in the future, an architectural redesign of the core would need to be conducted.

When comparing the two concrete shear wall alternatives, the design which utilized outriggers required smaller shear wall sections than that of the pure concrete core. Therefore, a concrete solution which engages the perimeter columns into the lateral system was found to be the best alternative to the existing lateral force resisting system.

The New York Times Building New York, NY Technical Report #3

## Introduction

The New York Times Headquarters Building (NYTB) is home to the New York Times newsroom and offices, as well as several law firms, whose offices are leased through Forest City Ratner. In collaboration with FXFOWLE Architects, the intent of the Renzo Piano Workshop was to introduce a flagship structure which promoted sustainability, lightness, and transparency. The architectural façade reflects the ever-changing environment surrounding the building, an appropriate acknowledgment of the heart of New York City.



Figure 1: New York Times Building Location (Google Maps)

The 52 story, 1,500,000 square foot building rises 744 feet above Eighth Avenue between 40<sup>th</sup> and 41<sup>st</sup> Street creating a 200' x 400' footprint. The tower's 300 foot mast allows for the structure to top out at 1048 feet above ground level. The New York Times occupies the entire five-story podium of the structure, and the first 27 levels in the tower. The additional levels are the office spaces leased through Forest City Ratner. Story heights average approximately 13 feet 9 inches in the tower, lending a great view to the open office plans. At the mechanical floors on levels 28 and 51, however, the floor height is approximately 27 feet to accommodate equipment and steel outriggers which link the perimeter columns to the braced framed core.

The remainder of this report investigates alternatives to the existing tower's lateral forceresisting system. One different preliminary design was developed by each structural student participating in the alternative IPD/BIM Thesis in order to compare the feasibility of three different alternatives to the existing lateral system. The three preliminary designs are as follows:

- Modified Braced Frame Core w/ outriggers at the 36<sup>th</sup> floor
- Pure Concrete Shear Wall Core
- Concrete Core w/ outriggers at the 28<sup>th</sup> and 51<sup>st</sup> floors

The analysis found in this report pertains to the preliminary design of the concrete core with outriggers. Hand calculations, as well as, computer analysis software (ETABS and SAP) were both utilized to perform this preliminary design. For the more detailed analyses on the modified braced frame and the pure concrete core, please refer to the Technical Report 3 of Erika Bonfanti and Benjamin Barben respectively.

## Existing Structural System Description

#### Foundation

The foundation of the NYTB combines typical spread footings with caissons to achieve its maximum axial capacity. Below the building's 16-foot cellar, the tower and podium mostly bear on Medium/Hard rock with a bearing capacity of 80 ksf., Class 2-65 per the New York City Building Code. However, a core sample taken just before finalizing the site investigation report indicated that rock at the southeast corner of the tower only had a 16 ksf bearing capacity, Class 4-65. At the seven columns that fall within this area, indicated in red on Figure 2, 24-inch diameter concrete-filled steel caissons were used to replace the original foundation designs. Each caisson was designed to support a load of 2,400 kips with 6,000 psi concrete.

Under the other 22 columns (indicated on Figure 2 in teal), spread footings with a concrete compressive strength of 6,000 psi are used to support the loads. The areas depicted in purple represent the two cantilevered sections of the tower. The columns which fall in these areas do not directly transfer load to the ground which removes the need for footings at these locations.



#### Columns

The 30" by 30" box columns (Figure 3) at the exterior notches of the tower consist of two 30 inch long flange plates and two web plates inset 3 inches from the exterior of the column on either side. Each web plate decreases in thickness from 7 inches as the column extends up the structure to account for the reduction in axial loads. Each flange plate decreases from 4 inches in thickness to relate to the architectural vision of the tower. Interior columns are a combination of built-up sections and rolled shapes. Column locations stay consistent throughout the height of the building, and every column is engaged in the lateral system. Refer to Figure 4 to view the column locations. Note that the unfilled boxes denote columns in the cantilevered areas which do not extend to the ground.



Figure 3: Box Column as Modeled in Revit Structure



#### Vierendeel Frame

A Vierendeel frame was used by Thornton Tomasetti as a combined solution at the 20 foot cantilever sections of the tower. Renzo Piano did not want columns obstructing the glass storefronts at the ground level, so these sections were cantilevered from the main structure. As a unique way to control deflections in the middle beams of the cantilevered section, the ladder-like moment frame engages all floors throughout the entire height of the tower. It connects to 28<sup>th</sup> and 52<sup>nd</sup> floor outriggers through the use of diagonal braces which effectively transfer loads from the frame to the core of the tower. Refer to Figure 9 on page 10 to view the brace location.

#### **Existing Floor System**

The existing floor structure of the NYTB is comprised of a composite steel beam system . The typical bay size is 30'-0"x 40'-0" with 2 <sup>1</sup>/<sub>2</sub>" normal weight concrete and 3" metal deck, typically spanning 10'-0" from W12x19 to W18x35 infill beams. These infill beams frame into W18x40 girders which in turn, transfer the floor loads to the various build-up columns throughout the structure. The rectangular bays are configured into a cruciform shape around the perimeter of the core. This composite system was selected to reduce the self weight of the structural system which greatly affects member sizes in high rise buildings. By reducing member sizes, the structural system was able to conform to "transparency" desired by the architectural design. Refer to Appendix A to view the typical floor framing plan.

#### **Existing Lateral System**

The main lateral load resisting system for the tower of the NYTB consists of a centralized steel braced frame core with outriggers on the two mechanical floors (Levels 28 and 51). The structural core consists of a combination of concentric and eccentric bracing which surrounds elevator shafts, MEP shafts, and stair wells. At this time, the member sizes of these braces have yet to be disclosed. The core configuration remains consistent from the ground level to the 27<sup>th</sup> floor as shown in Figure 5. But above the 28<sup>th</sup> floor, the low rise elevators were no longer required. In order to optimize the rentable space on the upper levels of the tower, the number of bracing lines in the North/South direction were reduced from two to one (Figure 6). Refer to Figures 7 and 8 to view the typical core bracing configurations.



The outriggers on the mechanical floors consist of chevron braces (Figure 10) and single diagonal braces. The outrigger system was designed to increase the stiffness of the tower by engaging the perimeter columns into the lateral system. Refer to page 10 to view the framing plans and bracing elevations of the outrigger system.



Figure 8: Typical Core E/W Core Bracing Elevation

During the design of the tower, the engineers at Thornton Tomasetti sized the members of the main lateral force resisting system merely for strength. In order to increase stiffness and meet wind deflection criterion, the structural engineers utilized the double story steel rod X-braces (original to Renzo Piano's exterior design) instead of increasing the member sizes of the main lateral force resisting system. These X-braces can be located on Figures 5 and 6 on the previous page. The steel rods transition from 2.5" to 4" in diameter and were prestressed to 210 kips. This induced tensile load prevents the need for large compression members which would not conform to the architectural vision of the exterior.

Although the X-braces did reduce the need for an overall member size increase, the lateral system still did not completely conform to the deflection criterion. Therefore, some of the 30" by 30" base columns were designed as built-up solid sections which reduced the building drift caused by the building overturning moment. After combining these solid base columns and the X-braces with the main lateral force resisting system, the calculated deflection of the tower due to wind was L/450 with a 10 year return period and a building acceleration of less than 0.025g for non-hurricane winds.

> 26 Floor 25 Floor



Figure 11: Typical N/S Outrigger Section (28th Floor)

### Design Parameters

When investigating the design of alternative lateral force resisting system of the New York Times Building, several parameters were put into place in order to yield comparable results between each alternative as well as to the existing lateral system. Due to the flexible nature of high rise structures, the period of vibration was the first criterion put into place. According for information obtained from the structural design engineer, the period of vibration of the NYTB ranges from 6.75s - 6.25s with the North/South being the more flexible direction. The goal of the three preliminary alternative designs was to maintain a period of vibration within 10% of the existing structure, making the target period of vibration 7.425s - 5.625s.

In addition to period of vibration, the three preliminary alternatives were required to meet a target building deflection due to wind of H/450 which was achieved by the existing design. Story drifts due to wind and seismic were determined and compared to the allowable story drift listed in the drift criterion section. Also, strength requirements per code could be utilized for each alternative to result in a reasonable design. However, strength was not an overall parameter for these preliminary designs. A more in depth strength analysis must be considered if one of these alternative designs is to be optimized.

## Design Codes and References

2006 International Building Code

AISC – LRFD, Steel Construction Manual 13th edition, American Institute of Steel Construction

ACI 318 – 08, Building Code Requirements for Structural Concrete, American Concrete Institute

ASCE 7-05, Minimum Design Loads for Buildings and other Structures

Nilson, A. H., Darwin, D., Dolan, C. W., (2004) "Design of Concrete Structures, Thirteenth Edition," McGraw-Hill, New York, NY, 2004.

PCI Design Handbook: Precast and Prestressed Concrete, (1992). "Section 3.7 Shear Wall Buildings", 4<sup>th</sup> ed.

## LRFD Design Load Combinations (ASCE 7-05)

1.4 (D+F) 1.2 (D+F+T) + 1.6 (L+H) + 0.5 (Lr or S or R) 1.2 D + 1.6 (Lr or S or R) + (L or .8W) 1.2 D + 1.6 W + L + .5 (Lr or S or R) 1.2 D + 1.0 E + L + .2S .9 D + 1.6 W +1.6 H .9 D + 1.0 E + 1.6 H

| D= dead load               | Lr = roof live load           | W= wind load                         |
|----------------------------|-------------------------------|--------------------------------------|
| E= earthquake load         | L= live load                  | T= self-straining force              |
| R = rain load              | S= snow load                  | F = load due to fluids               |
| H= load due to lateral ear | th pressure, ground water pre | ssure, or pressure of bulk materials |

Note: The controlling load combinations for lateral loads are denoted in bold.

## Drift Criterion

Wind:

| Load combination for short-term effects: | D + 0.5 L + 0.7 W (ASCE 7-05, CC.1.2) |
|------------------------------------------|---------------------------------------|
| Lateral Deflection Range:                | H/600 to H/400 (ASCE 7-05, CC.1.2)    |
| Existing Design:                         | H/450 (Thornton Tomasetti)            |

Seismic (ASCE 7-05):

| FABLE 12.12-1 | ALLOWABLE STORY DRIFT, | $\Delta_a^{a,b}$ |
|---------------|------------------------|------------------|
|---------------|------------------------|------------------|

| Structure                                                                                                                                                                                            | Occupancy Category                |                      | ory                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------|
|                                                                                                                                                                                                      | I or II                           | III                  | IV                   |
| Structures, other than masonry shear wall structures, 4 stories or less with interior walls, partitions, ceilings and exterior wall systems that have been designed to accommodate the story drifts. | 0.025h <sub>sx</sub> <sup>c</sup> | 0.020h <sub>sx</sub> | 0.015h <sub>sx</sub> |
| Masonry cantilever shear wall structures d                                                                                                                                                           | $0.010h_{sx}$                     | $0.010h_{sx}$        | $0.010h_{sx}$        |
| Other masonry shear wall structures                                                                                                                                                                  | 0.007h <sub>sx</sub>              | 0.007h               | $0.007h_{sx}$        |
| All other structures                                                                                                                                                                                 | $0.020h_{sx}$                     | $0.015h_{sx}$        | $0.010h_{sx}$        |

**Note:** Occupancy Category taken as Type III because the occupant load for the NYTB is greater than 5000 persons (2006 IBC, Table 1604.5).

## Stiffness Modification

When designing reinforced building systems, a reduction in stiffness due to cracking associated with the concrete shear walls must be taken into account. The concrete sections designed in this report assumed 50% of the stiffness values were based on gross section properties. However, the code allows for a 1.4 modifier to be applied when designing for lateral loads resulting from wind.(ACI 318 sections 8.8 & 10.10.4)

## Design Loads

## Gravity Loads

The following table is a summary of the typical gravity loads used for this and/or the existing design of the New York Times Building. Other than the live load, the gravity loads were only used to calculate the building mass per story which is required to calculate a structure's period of vibration. Due to the inherent mass of a shear wall core, the shear walls were initially assumed to be 24" thick in order to result in a more accurate period of vibration.

| Gravity Loading | Typical Floor               | Mechanical Floor | Roof           |
|-----------------|-----------------------------|------------------|----------------|
| Curtain Wall    | 25 psf                      | 25 psf           | 25 psf         |
| Floor Dead      | 93 psf                      | 110 psf          | 100 psf        |
| 24" Shear Walls | 300 psf                     | 300 psf          |                |
| Live            | 50 psf +20 psf (Partitions) | 150 psf          | 30 psf + Drift |

Please note that at this point in the preliminary design of the alternative lateral force resisting system, the gravity system design was unknown. Therefore, gravity loads were not applied in this design because the amount of load transferred to the shear walls was unable to be determined. The effects due to gravity on the lateral system must be considered once the gravity load paths have been determined.

### Wind Loads

The wind pressures used in this for the design for the alternative lateral systems were calculated using Method 2 from ASCE 7-05.Refer to Appendix C to view this calculation. For this preliminary design, the stiffnesses of each shear wall were initially unknown making the load applied due to torsion indeterminable. Therefore, only the Case 1 wind loading was used to perform this preliminary lateral design. The center of



rigidity was initially unknown as well. However, once the concrete shear wall core layout was performed, it was determined that the center of rigidity would be at the center of mass due to symmetry. Using this assumption, the applied loads due to each case were determined. A summary of these results can be found on pages 16 - 18. The validity of this assumption was determined after the preliminary design was performed. Also, an investigation on the effects due to Case 2 wind was conducted using ETABS in order to determine if the torsional effects from that loading condition will control the design of any shear walls within the core, refer to page 26. Case 3 and 4 Wind will also need to be considered if this alternative lateral system is to be optimized.

| 22,9 psf  | 22.9 psf   |          |
|-----------|------------|----------|
|           |            |          |
|           |            |          |
|           |            |          |
|           |            |          |
|           |            |          |
|           | Roaf       |          |
| 44,5 psr  | Elever Ed. |          |
| 44.3 psf  | Floor 51   |          |
| 44.0 psf  | Floor av   |          |
| 43.7 psf  | Floor 49   |          |
| 43,5 psf  | Fluor 40   |          |
| 43,2 paf  | Fidor 47   |          |
| 43.0psf   | Floor 46   |          |
| 42.7 psf  | Fjdor 45   |          |
| 42.4 pat  | Floor 44   |          |
| 42.2 psf  | Floor 43   |          |
| 41.9 psf  | Floor 42   |          |
| 41.6 psf  | Floor 41   |          |
| 41.3 psf  | Floor 40   |          |
| 41.0 psf  | Floor 39   |          |
| 40.8 psf  | Floor 38   |          |
| 40,5 psf  | Foor 37    |          |
| -40.2 psf | Flaor 36   |          |
| 39.9 psf  | Flaor 35   |          |
| 39.5 paf  | Flaor 34   |          |
| 39.2 psf  | Floor 33   |          |
| 38.0 mef  | Flaor 32   |          |
| 98.8 per  | Flaor 31   |          |
| 38.2 pcf  | Floor 30   |          |
| 30,2 psi  | Floor 29   |          |
| 37.9 psf  |            |          |
| 27.2 prf  | Flaor 28   |          |
| 36 8 ppi  | Floor 27   |          |
| 36,8 per  | Floor 26   |          |
| 30.4 08   | Floor 25   |          |
| 36,0 pst  | Floor 24   |          |
| 35,6 ps1  | Floor 23   |          |
| 35,1 psr  | Floor 22   |          |
| 34 / psr  | Floor 21   |          |
| 34,3 pst  | Floor 20   |          |
| 32,0 [DST | Floor 19   |          |
| 33,3 ps1  | Floor 18   |          |
| 32,8 psi  | Floor 17   |          |
| 32, 3 pst | Floor 16   |          |
| 31,8 psf  | Flaor 15   |          |
| 31.2 psf  | Floor 14   |          |
| 30,7 pst  | Floor 13   |          |
| 30,1 psr  | Flaor 12   |          |
| 29.4 psf  | Flaor 11   |          |
| 28.7 psf  | Floor 10   |          |
| 28.0 psf  | Floor 9    |          |
| 27.2 psf  | Floor 8    |          |
| 26.4 psf  | Floor 7    |          |
| 25.5 ps/  | Floor 6    |          |
| 24.5 psf  | Floor 5    |          |
| 23.4 psf  | Floor 4    |          |
| 22.1 psf  | Floor 3    |          |
| 20.4 psf  | Electron 0 |          |
| 18.3 insf | ritor 2    |          |
| 14.6 psf  | Flipor 1   | 24.8 psf |

Figure 12: North/South Wind Pressure Diagram

|          | 22.4 psf | 22.4 psf  |          |
|----------|----------|-----------|----------|
|          |          |           |          |
|          |          |           |          |
|          |          |           |          |
|          |          | Roof      |          |
| 43.9 psf |          |           |          |
| 43.6 psf |          | Floor 51  | -        |
| 43,3 psf |          | Floor 50  | -        |
| 43.0 psf |          | Floor 49  |          |
| 42.8 psf |          | Floor 48  | -        |
| 42,5 psf |          | Floor 47  | -        |
| 42,3 psf |          | Floor 46  | -        |
| 42,0 psf |          | Floor 45  | -        |
| 41.8 psf |          | Floor 44  | -        |
| 41.5 psf |          | Floor 43  | -        |
| 41.2 psf |          | Floor 42  | 1        |
| 41.0 psf |          | Floor 40  | 1        |
| 40.7 psf |          | Floor 39  |          |
| 40.4 psf |          | Floor 38  | 1        |
| 40.1 psf |          | Floor 30  |          |
| 39.8 psf |          | Floor 36  | 1 1      |
| 39,5 psf |          | Floor SE  | 1 1      |
| 39,2 psf |          | Floor 35  | -        |
| 38,9 psf |          | Filter 22 | -        |
| 38,6 psf |          | Floor 33  |          |
| 38,3 psf |          | Floor 32  | -        |
| 38.0 psf |          | Fibor 31  |          |
| 37,6 psf |          | Floor 30  | - I      |
| 27.2     |          | F100r 20  | -        |
| 37.3 psr |          | Elece 00  |          |
| 36.8 psf |          | Floor 28  | -        |
| 36.2 psf |          | Floor 27  | - I      |
| 35.8 psf |          | Floor 26  | 4 1      |
| 35.4 psf |          | Floor 25  | -        |
| 35.0 psf |          | Floor 24  | 4 1      |
| 34.6 psf |          | Floor 23  | -        |
| 34.2 psf |          | Floor 22  |          |
| 33.7 psf |          | Fibor 21  |          |
| 33.3 psf |          | Floor 20  | - I      |
| 32.8 psf |          | Floor 19  | 4 1      |
| 32,3 psf |          | Floor 18  | - I      |
| 31.8 psf |          | Floor 17  | 4 1      |
| 31.3 psf |          | Floor 16  | -        |
| 30.8 psf |          | Floor 15  | 4 1      |
| 30.2 psf |          | Floor 14  | - I      |
| 29.6 ps  | 1        | Floor 13  |          |
| 28.9 ps  | sf       | Fibor 12  | -        |
| 28.3 p   | sf       | Floor 11  |          |
| 27.6     | psf      | Fiber 0   | -        |
| 26.8     | 3 psf    | Floor 9   | - I      |
| 26.      | 0 psf    | FIGGE 0   | 1 1      |
| 25       | 5.1 psf  | Floor 6   | 1        |
| La Cal   | 24.1 psf | Floor 5   | 1 1      |
| I        | 23.0 psf | Floor a   | 1        |
|          | 21.7 psf | HIDOF 4   | 1        |
|          | 20.1 psf | Floor 3   | 4 1      |
|          | 19.1     | Floor 2   | 4        |
|          | 10.1 psr | Elect of  | 07.4     |
|          | 14.4 DST | FI007 1   | 27.4 DSf |

Figure 13: East/West Wind Pressure Diagram

| Calculated Wind Forces on Tower (Using Method 2, ASCE 7-05) |              |      |        |       |        |          |         |
|-------------------------------------------------------------|--------------|------|--------|-------|--------|----------|---------|
|                                                             | Height Above |      |        |       |        | Mon      | nent    |
| Incal                                                       | Ground       | Load | (kips) | Shear | (kips) | (ft-)    | tips)   |
| Level                                                       | (ft)         |      |        | - 6   |        |          |         |
|                                                             |              | E/W  | N/S    | E/W   | N/S    | E/W      | N/S     |
| 2                                                           | 25.66        | 181  | 125    | 9155  | 7313   | 3802748  | 3090052 |
| 3                                                           | 41.13        | 143  | 110    | 9012  | 7203   | 36121//  | 2938076 |
| 4                                                           | 70.02        | 142  | 105    | 8733  | 6987   | 3338442  | 2825801 |
| 5                                                           | 86.00        | 137  | 105    | 8596  | 6881   | 3209059  | 2615701 |
| 7                                                           | 98.42        | 140  | 100    | 8456  | 6772   | 3089835  | 2520375 |
| 8                                                           | 112.17       | 142  | 111    | 8313  | 6662   | 2978339  | 2431095 |
| 9                                                           | 125.02       | 145  | 112    | 8160  | 6550   | 2863055  | 2339734 |
| 10                                                          | 139.67       | 147  | 114    | 8022  | 6436   | 2749743  | 2247905 |
| 11                                                          | 153.40       |      | 445    | 2022  | 6450   | 2/45/45  | 247505  |
| 12                                                          | 103.42       | 149  | 115    | 7723  | 6203   | 2538455  | 2158655 |
| 12                                                          | 107.17       | 250  | 11/    | 1125  | 0205   | 2020101  | 20/0350 |
| 13                                                          | 180.92       | 159  | 124    | 7565  | 6079   | 2421925  | 1984843 |
| 14                                                          | 195.83       | 154  | 120    | 7411  | 5960   | 2312408  | 1896856 |
| 15                                                          | 208.42       | 149  | 116    | 7262  | 5844   | 2209361  | 1814018 |
| 16                                                          | 222.17       | 157  | 122    | 7106  | 5721   | 2112805  | 1736347 |
| 1/                                                          | 235.92       | 158  | 125    | 6948  | 5598   | 2014024  | 165683/ |
| 18                                                          | 249.67       | 159  | 124    | 6788  | 5474   | 1917406  | 1579015 |
| 19                                                          | 263.42       | 161  | 126    | 6628  | 5348   | 1822969  | 1502898 |
| 20                                                          | 277.17       | 162  | 127    | 6466  | 5221   | 1730733  | 1428499 |
| 21                                                          | 290.92       | 163  | 128    | 6303  | 5094   | 1640714  | 1355834 |
| 22                                                          | 304.67       | 164  | 129    | 6138  | 4965   | 1552930  | 1284917 |
| 23                                                          | 318.42       | 165  | 129    | 5973  | 4836   | 1467397  | 1215760 |
| 24                                                          | 345.02       | 460  | 434    | 5630  | 4705   | 4202445  | 4003700 |
| 25                                                          | 340.82       | 168  | 151    | 2029  | 45/4   | 1505145  | 1082780 |
| 26                                                          | 309.07       | 169  | 152    | 5470  | 4442   | 1224457  | 1018982 |
| 27                                                          | 373.42       | 175  | 137    | 5296  | 4305   | 1148081  | 956995  |
| 28                                                          | 388.00       | 262  | 205    | 5034  | 4100   | 1071859  | 895063  |
| 29                                                          | 410.00       | 259  | 203    | 4//5  | 5897   | 964032   | 807299  |
| 30                                                          | 429.25       | 173  | 136    | 4601  | 3761   | 861993   | 724137  |
| 31                                                          | 443.00       | 174  | 137    | 4427  | 3624   | 797532   | 671492  |
| 32                                                          | 456.75       | 175  | 138    | 4252  | 3486   | 735462   | 620723  |
| 33                                                          | 470.50       | 176  | 138    | 4076  | 3348   | 675796   | 571841  |
| 34                                                          | 181.25       | 177  | 130    | 3800  | 3209   | 618546   | 524855  |
| 35                                                          | 498.00       | 178  | 140    | 3721  | 3069   | 563723   | 479775  |
| 36                                                          | 511.75       | 179  | 140    | 3542  | 2929   | 511338   | 436609  |
| 37                                                          | 525.50       | 179  | 141    | 3363  | 2788   | 461403   | 395369  |
| 38                                                          | 539.25       | 180  | 142    | 3183  | 2647   | 413929   | 356061  |
| 39                                                          | 553.00       | 181  | 142    | 3002  | 2504   | 368927   | 318696  |
| 40                                                          | 500.75       | 182  | 145    | 2820  | 2562   | 526407   | 285282  |
| 41                                                          | 580.50       | 182  | 143    | 2638  | 2218   | 286379   | 249828  |
| 42                                                          | 608.00       | 184  | 144    | 2435  | 1930   | 246654   | 188931  |
| 45                                                          | 821.75       | 195  | 145    | 2005  | 1794   | 101253   | 161204  |
| 44                                                          | 021.70       | 102  | 145    | 2080  | 1/64   | 101352   | 101504  |
| 45                                                          | 030.50       | 185  | 146    | 1901  | 1639   | 151395   | 135771  |
| 46                                                          | 049.25       | 186  | 146    | 1/15  | 1492   | 125980   | 112237  |
| 47                                                          | 003.00       | 187  | 147    | 1529  | 1545   | 99116    | 90711   |
| 48                                                          | 676.75       | 187  | 147    | 1342  | 1198   | 76813    | 71201   |
| 49                                                          | 690.50       | 188  | 148    | 1154  | 1050   | 57080    | 53714   |
| 50                                                          | /04.25       | 193  | 152    | 961   | 898    | 39926    | 38257   |
| 51                                                          | 718.67       | 284  | 224    | 676   | 674    | 25071    | 24564   |
| ROOT                                                        | 740.00       | 6/6  | 6/4    | 0     | 0      | 0        | 0       |
| Screen *                                                    | 802 & 819    | 491  | 528    |       |        |          |         |
| Iotal                                                       |              | 9116 | /458   | 9555  | /4.58  | 11/2/512 | 5185405 |

\* Loads from the screens are superimposed on to the Roof level.

The New York Times Building New York, NY Technical Report #3

| Load Case 1 |          |        |                         |          |        |                         |
|-------------|----------|--------|-------------------------|----------|--------|-------------------------|
| Laval       |          | E/W    |                         |          | N/S    |                         |
| Level       | P (kips) | e (ft) | M <sub>t</sub> (kip-ft) | P (kips) | e (ft) | M <sub>t</sub> (kip-ft) |
| 2           | 181.35   | 0      | 0                       | 124.64   | 0      | 0                       |
| 3           | 142.66   | 0      | 0                       | 109.95   | 0      | 0                       |
| 4           | 141.97   | 0      | 0                       | 109.66   | 0      | 0                       |
| 5           | 137.24   | 0      | 0                       | 106.18   | 0      | 0                       |
| 6           | 137.36   | 0      | 0                       | 106.41   | 0      | 0                       |
| 7           | 139.98   | 0      | 0                       | 108.56   | 0      | 0                       |
| 8           | 142.37   | 0      | 0                       | 110.53   | 0      | 0                       |
| 9           | 144.57   | 0      | 0                       | 112.33   | 0      | 0                       |
| 10          | 146.61   | 0      | 0                       | 114.01   | 0      | 0                       |
| 11          | 148.51   | 0      | 0                       | 115.58   | 0      | 0                       |
| 12          | 150.31   | 0      | 0                       | 117.05   | 0      | 0                       |
| 13          | 158.52   | 0      | 0                       | 123.53   | 0      | 0                       |
| 14          | 153.68   | 0      | 0                       | 119.82   | 0      | 0                       |
| 15          | 148.56   | 0      | 0                       | 115.89   | 0      | 0                       |
| 16          | 156.61   | 0      | 0                       | 122.23   | 0      | 0                       |
| 17          | 158.01   | 0      | 0                       | 123.38   | 0      | 0                       |
| 18          | 159.36   | 0      | 0                       | 124.49   | 0      | 0                       |
| 19          | 160.65   | 0      | 0                       | 125.56   | 0      | 0                       |
| 20          | 161.90   | 0      | 0                       | 126.58   | 0      | 0                       |
| 21          | 163.11   | 0      | 0                       | 127.58   | 0      | 0                       |
| 22          | 164.28   | 0      | 0                       | 128.54   | 0      | 0                       |
| 23          | 165.41   | 0      | 0                       | 129.47   | 0      | 0                       |
| 24          | 166.51   | U      | 0                       | 130.37   | 0      | 0                       |
| 25          | 167.58   | 0      | 0                       | 131.25   | 0      | 0                       |
| 26          | 168.61   | 0      | 0                       | 132.10   | 0      | 0                       |
| 27          | 1/4.80   | 0      | 0                       | 136.99   | 0      | 0                       |
| 28          | 261.91   | 0      | 0                       | 205.34   | 0      | 0                       |
| 29          | 172.40   | 0      | 0                       | 126.10   | 0      | 0                       |
| 30          | 173.40   | 0      | 0                       | 130.10   | 0      | 0                       |
| 31          | 1/4.3/   | 0      | 0                       | 136.83   | 0      | 0                       |
| 22          | 175.25   | 0      | 0                       | 120.25   | 0      | 0                       |
| 24          | 176.10   | 0      | 0                       | 130.20   | 0      | 0                       |
| 35          | 170.94   | 0      | 0                       | 130.95   | 0      | 0                       |
| 36          | 178.57   | 0      | 0                       | 140.29   | 0      | 0                       |
| 37          | 179.36   | 0      | 0                       | 140.25   | 0      | 0                       |
| 38          | 180.14   | 0      | 0                       | 140.54   | 0      | 0                       |
| 39          | 180.90   | 0      | 0                       | 142.20   | 0      | 0                       |
| 40          | 181.65   | 0      | 0                       | 142.82   | 0      | 0                       |
| 41          | 182.39   | 0      | 0                       | 143.42   | 0      | 0                       |
| 42          | 183.11   | 0      | 0                       | 144.02   | 0      | 0                       |
| 43          | 183.83   | 0      | 0                       | 144 61   | 0      | 0                       |
| 44          | 184.53   | 0      | 0                       | 145.18   | 0      | 0                       |
| 45          | 185.22   | 0      | 0                       | 145.75   | 0      | 0                       |
| 46          | 185.90   | 0      | 0                       | 146.31   | 0      | 0                       |
| 47          | 186.57   | 0      | 0                       | 146.86   | 0      | 0                       |
| 48          | 187.23   | 0      | 0                       | 147.41   | 0      | 0                       |
| 49          | 187.88   | 0      | 0                       | 147.94   | 0      | 0                       |
| 50          | 193.11   | 0      | 0                       | 152.08   | 0      | 0                       |
| 51          | 284.23   | 0      | 0                       | 223.89   | 0      | 0                       |
| Roof        | 676.30   | 0      | 0                       | 674 18   | 0      | 0                       |
|             |          |        |                         |          |        |                         |

|       |          |            | Load Case 1 | 2              |            |             |
|-------|----------|------------|-------------|----------------|------------|-------------|
| ,     |          | F/W        | Loud case   | -              | N/S        |             |
| Level | P (kips) | +/- e (ft) | M. (kip-ft) | P (kins)       | +/- e (ft) | M. (kip-ft) |
| 2     | 125.01   | 20.1       | 2057 805    | 02/9           | 12 55      | 3301 2795   |
| 2     | 107.00   | 29.1       | 3957.895    | 93.48          | 23.55      | 1942 0258   |
| 4     | 105.48   | 29.1       | 3098 57     | 82.40          | 23.55      | 1036 8247   |
| 5     | 102.93   | 29.1       | 2005 323    | 79.63          | 23.55      | 1975 3250   |
| 5     | 102.55   | 29.1       | 2995.525    | 79.81          | 23.55      | 1879 4436   |
| 7     | 103.02   | 29.1       | 3055 112    | 81.42          | 23.55      | 1017 4996   |
| 2     | 104.55   | 20.1       | 3107.1      | 82.80          | 23.55      | 1052 1538   |
| 9     | 108.42   | 29.1       | 3155 151    | 84.25          | 23.55      | 1952.1558   |
| 10    | 100.42   | 29.1       | 3109 676    | 95.51          | 23.55      | 2013 6779   |
| 11    | 111 30   | 29.1       | 3241 300    | 96.68          | 23.55      | 2013.0775   |
| 12    | 112.73   | 29.1       | 3280 464    | 87.79          | 23.55      | 2041.3761   |
| 13    | 118.89   | 29.1       | 3459 799    | 92.65          | 23.55      | 2181 8555   |
| 14    | 115.05   | 20.1       | 2254 084    | 92.05          | 23.55      | 2101.0000   |
| 14    | 115.20   | 29.1       | 20/0 377    | 05.07<br>86.07 | 23.33      | 2016 9671   |
| 15    | 111.42   | 29.1       | 3242.377    | 01.52          | 20.00      | 2040.9071   |
| 10    | 117.46   | 29.1       | 3417.977    | 91.07          | 23.55      | 2158.9122   |
| 1/    | 110.51   | 29.1       | 2477.00     | 92.54          | 23.55      | 21/9.2/0    |
| 10    | 119.52   | 29.1       | 3477.50     | 95.57          | 20.00      | 2198.6515   |
| 19    | 120.49   | 29.1       | 3500.205    | 94.17          | 25.55      | 2217.0320   |
| 20    | 121.43   | 29.1       | 3533.549    | 94.94          | 23.55      | 2235.8017   |
| 21    | 122.33   | 29.1       | 3559.901    | 95.68          | 23.55      | 2253.3335   |
| 22    | 123.21   | 29.1       | 3585.397    | 96.40          | 23.55      | 22/0.2962   |
| 23    | 124.06   | 29.1       | 3610.102    | 97.10          | 23.55      | 2286.7323   |
| 24    | 124.88   | 29.1       | 3634.072    | 97.78          | 23.55      | 2302.6795   |
| 25    | 125.68   | 29.1       | 3657.357    | 98.44          | 23.55      | 2318.1709   |
| 26    | 126.46   | 29.1       | 3680.003    | 99.08          | 23.55      | 2533.237    |
| 27    | 131.10   | 29.1       | 3814.912    | 102.74         | 23.55      | 2419.505    |
| 28    | 196.43   | 29.1       | 5716.21     | 154.01         | 23.55      | 3626.9037   |
| 29    | 194.15   | 29.1       | 5649.257    | 152.27         | 23.55      | 3555.8401   |
| 30    | 130.11   | 29.1       | 3786.129    | 102.07         | 23.55      | 2403.8419   |
| 31    | 130.78   | 29.1       | 3805.642    | 102.53         | 23.55      | 2416.8239   |
| 32    | 131.43   | 29.1       | 3824.734    | 103.16         | 23.55      | 2429.5256   |
| 33    | 132.08   | 29.1       | 3843.425    | 103.59         | 23.55      | 2441.961    |
| 34    | 132.71   | 29.1       | 3861.736    | 104.21         | 23.55      | 2454.1431   |
| 35    | 133.32   | 29.1       | 38/9.684    | 104./2         | 23.55      | 2456.0839   |
| 36    | 133.95   | 29.1       | 3897.287    | 105.21         | 23.55      | 24/7.7947   |
| 37    | 134.52   | 29.1       | 3914.559    | 105.70         | 23.55      | 2489.2858   |
| 38    | 135.10   | 29.1       | 3931.515    | 106.18         | 23.55      | 2500.5667   |
| 39    | 135.68   | 29.1       | 3948.169    | 106.65         | 23.55      | 2511.6466   |
| 40    | 136.24   | 29.1       | 3964.534    | 107.11         | 23.55      | 2522.5338   |
| 41    | 135.79   | 29.1       | 3980.62     | 107.57         | 23.55      | 2553.2561   |
| 42    | 137.33   | 29.1       | 3996.44     | 108.02         | 23.55      | 2543.761    |
| 43    | 137.87   | 29.1       | 4012.004    | 108.46         | 23.55      | 2554.1153   |
| 44    | 138.40   | 29.1       | 4027.32     | 108.89         | 23.55      | 2554.3055   |
| 45    | 138.91   | 29.1       | 4042.4      | 109.31         | 23.55      | 2574.3376   |
| 46    | 139.42   | 29.1       | 4057.25     | 109.73         | 23.55      | 2584.2176   |
| 4/    | 139.95   | 29.1       | 40/1.88     | 110.15         | 23.55      | 2593.9508   |
| 48    | 140.42   | 29.1       | 4086.297    | 110.55         | 23.55      | 2603.5422   |
| 49    | 140.91   | 29.1       | 4100.508    | 110.96         | 23.55      | 2612.9969   |
| 50    | 144.83   | 29.1       | 4214.612    | 114.06         | 23.55      | 2686.1205   |
| 51    | 213.17   | 29.1       | 6203.267    | 167.92         | 23.55      | 3954.4265   |
| Roof  | 507.22   | 29.1       | 14760 18    | 505.63         | 23 55      | 11907 645   |

The New York Times Building New York, NY Technical Report #3

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                        | 1 <sub>t</sub> (kip-ft) | Total        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|
| Leven P (kips) +/-e(ft) Mt (kip-ft) P (kips) +/-e(ft) M   2 136.01 0 0 93.48 0   3 107.00 0 0 82.46 0   4 106.48 0 0 82.24 0   5 102.93 0 0 79.63 0   6 103.02 0 0 79.81 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 100.42 0 0 85.51 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0 | 1 <sub>t</sub> (kip-ft) | 14 Diam 63   |
| 2 136.01 0 0 93.48 0   3 107.00 0 0 82.46 0   4 106.48 0 0 82.24 0   5 102.93 0 0 79.63 0   6 103.02 0 0 79.81 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 100.42 0 0 85.51 0   10 109.95 0 0 85.51 0   11 111.33 0 0 85.68 0                                                           |                         | wit (Kip-ft) |
| 3 107.00 0 0 82.46 0   4 106.48 0 0 82.24 0   5 102.93 0 0 79.63 0   6 103.02 0 0 79.63 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 100.42 0 0 44.25 0   10 109.95 0 0 85.51 0   11 111.33 0 0 86.68 0                                                                                  | 0                       | 0            |
| 4 106.48 0 0 82.24 0   5 102.93 0 0 79.63 0   6 103.02 0 0 79.81 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 108.42 0 0 84.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                         | 0                       | 0            |
| 5 102.93 0 0 79.63 0   6 103.02 0 0 79.81 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 108.42 0 0 84.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                                                | 0                       | 0            |
| 6 103.02 0 0 79.81 0   7 104.99 0 0 81.42 0   8 106.78 0 0 82.89 0   9 108.42 0 0 84.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                                                                       | 0                       | 0            |
| 7 104.99 0 0 81.42 0   8 106.78 0 82.89 0   9 100.42 0 0 84.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                                                                                                | 0                       | 0            |
| 8 106.78 0 0 82.89 0   9 100.42 0 0 84.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                                                                                                                     | 0                       | 0            |
| 9 108.42 0 0 04.25 0   10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0   42 142.37 0 0 87.68 0                                                                                                                                                                                                    | 0                       | 0            |
| 10 109.95 0 0 85.51 0   11 111.39 0 0 86.68 0                                                                                                                                                                                                                                                   | 0                       | 0            |
| 11 111.39 0 0 86.68 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 10 110.70 0 0.07.70 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 12 112.73 0 0 87.79 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 13 118.89 0 0 92.65 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 14 115.26 0 0 89.87 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 15 111.42 0 0 86.92 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 16 117.46 0 0 91.67 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 17 118.51 0 0 92.54 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 18 119.52 0 0 93.37 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 19 120.49 0 0 94.17 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 20 121.43 0 0 94.94 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 21 122.33 0 0 95.68 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 22 123.21 0 0 96.40 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 23 124.06 0 0 97.10 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 24 124.88 0 0 97.78 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 25 125.68 0 0 98.44 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 26 126.46 0 0 99.08 0                                                                                                                                                                                                                                                                           | 0                       | 0            |
| 27 131.10 0 0 102.74 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 28 196.43 0 0 154.01 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 29 194.13 0 0 152.27 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 30 130.11 0 0 102.07 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 31 130.78 0 0 102.63 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 32 131.43 0 0 103.16 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 33 132.08 0 0 103.69 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 34 132.71 0 0 104.21 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 35 133.32 0 0 104.72 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 36 133.93 0 0 105.21 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 37 134.52 0 0 105.70 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 38 135.10 0 0 106.18 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 39 135.68 0 0 106.65 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 40 136.24 0 0 107.11 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 41 136.79 0 0 107.57 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 42 137.33 0 0 108.02 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 43 137.87 0 0 108.46 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 44 138.40 0 0 108.89 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 45 138.91 0 0 109.31 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 46 139.42 0 0 109.73 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 47 139.93 0 0 110.15 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 48 140.42 0 0 110.55 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 49 140.91 0 0 110.96 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 50 144.83 0 0 114.06 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| 51 213.17 0 0 167.92 0                                                                                                                                                                                                                                                                          | 0                       | 0            |
| Roof 507.22 0 0 505.63 0                                                                                                                                                                                                                                                                        | 0                       | 0            |

| Load Case 4 |          |            |                         |                |            |                         |                         |
|-------------|----------|------------|-------------------------|----------------|------------|-------------------------|-------------------------|
|             |          | F/W        |                         |                | N/S        |                         | Total                   |
| Level       | P (kips) | +/- e (ft) | M <sub>t</sub> (kip-ft) | P (kips)       | +/- e (ft) | M <sub>t</sub> (kip-ft) | M <sub>t</sub> (kip-ft) |
| 2           | 102.10   | 29.1       | 2971.06                 | 70.17          | 23.55      | 1652.501                | 4623.561                |
| 3           | 80.32    | 29.1       | 2337.271                | 61.90          | 23.55      | 1457.814                | 3795.085                |
| 4           | 79.93    | 29.1       | 2325.993                | 61.74          | 23.55      | 1453.91                 | 3779.903                |
| 5           | 77.27    | 29.1       | 2248.489                | 59.78          | 23.55      | 1407.745                | 3656.234                |
| 6           | 77.33    | 29.1       | 2250.431                | 59.91          | 23.55      | 1410.836                | 3661.267                |
| 7           | 78.81    | 29.1       | 2293.37                 | 61.12          | 23.55      | 1439.403                | 3732.773                |
| 8           | 80.15    | 29.1       | 2332.471                | 62.23          | 23.55      | 1465.417                | 3797.888                |
| 2           | 81.39    | 29.1       | 2368.467                | 63.24          | 23.55      | 1489.364                | 3857.831                |
| 10          | 82.54    | 29.1       | 2401.89                 | 64.19          | 23.55      | 1511.601                | 3913.491                |
| 11          | 83.61    | 29.1       | 2433.143                | 65.07          | 23.55      | 1532.393                | 3965.536                |
| 12          | 84.62    | 29.1       | 2462.535                | 65.90          | 23.55      | 1551.947                | 4014.482                |
| 13          | 89.25    | 29.1       | 2597.156                | 69.55          | 23.55      | 1637.846                | 4235.002                |
| 14          | 86.52    | 29.1       | 2517.761                | 67.46          | 23.55      | 1588.689                | 4106.451                |
| 15          | 83.64    | 29.1       | 2433.944                | 65.25          | 23.55      | 1536.59                 | 3970.534                |
| 16          | 88.17    | 29.1       | 2565.761                | 68.82          | 23.55      | 1620 623                | 4186.385                |
| 17          | 88.96    | 29.1       | 2588 738                | 69.47          | 23.55      | 1635.91                 | 4224 648                |
| 18          | 89.72    | 29.1       | 2610.804                | 70.09          | 23.55      | 1650.59                 | 4261.393                |
| 19          | 90.45    | 29.1       | 2632.04                 | 70.69          | 23.55      | 1664,718                | 4296.758                |
| 20          | 91.15    | 29.1       | 2652.517                | 71.27          | 23.55      | 1678 342                | 4330.859                |
| 20          | 91.83    | 29.1       | 2672 299                | 71.83          | 23.55      | 1691 502                | 4363 801                |
| 22          | 92.49    | 29.1       | 2691 438                | 72.37          | 23.55      | 1704 236                | 4395 674                |
| 22          | 92.13    | 29.1       | 2709 983                | 72.89          | 23.55      | 1716 574                | 4426 557                |
| 24          | 92.74    | 29.1       | 2703.303                | 72.00          | 22.55      | 1728 545                | 4456 521                |
| 24          | 94.25    | 29.1       | 2745 456                | 72.00          | 23.55      | 1740 174                | AA9E 62                 |
| 25          | 94.93    | 29.1       | 2762.456                | 74.37          | 23.55      | 1751 493                | 4512 929                |
| 20          | 99.41    | 29.1       | 2702.430                | 77.12          | 23.55      | 1916 242                | 4679 969                |
| 28          | 147.46   | 29.1       | 4290 969                | 115.61         | 23.55      | 2722 596                | 7013 564                |
| 29          | 145.73   | 29.1       | 4240 709                | 114.30         | 23.55      | 2691 775                | 6932 484                |
| 30          | 97.67    | 29.1       | 2842 121                | 76.62          | 22.55      | 1904 494                | 4646 605                |
| 31          | 98.17    | 29.1       | 2856 769                | 77.04          | 23.55      | 1814 229                | 4670.998                |
| 32          | 98.66    | 29.1       | 2871.1                  | 77.44          | 22.55      | 1823 764                | 4694 864                |
| 22          | 99.15    | 29.1       | 2071.1                  | 77.84          | 22.55      | 1922.099                | 4718.22                 |
| 2/          | 99.62    | 29.1       | 2009.131                | 70.02          | 23.55      | 1942 242                | 4741.12                 |
| 25          | 100.02   | 29.1       | 2030.077                | 70.23          | 23.33      | 1042.245                | 4741.12                 |
| 26          | 100.08   | 29.1       | 2012.55                 | 70.00          | 23.55      | 1051.207                | 4705.557                |
| 27          | 100.55   | 29.1       | 2929.903                | 70.20          | 23.55      | 1059.550                | 4705.501                |
| 38          | 101.42   | 29.1       | 2951 257                | 79.71          | 23.55      | 1877 092                | 4828 349                |
| 20          | 101.42   | 29.1       | 2963 759                | 80.06          | 23.55      | 1885 409                | 4849 169                |
| 40          | 102.05   | 29.1       | 2976.043                | 80.41          | 23.55      | 1893 582                | 4869 625                |
| 40          | 102.27   | 29.1       | 2988 110                | 80.75          | 23.55      | 1901.616                | 4889 725                |
| 41          | 102.00   | 29.1       | 2000.004                | 00.75          | 23.55      | 1909 517                | 4909 511                |
| 42          | 102.09   | 29.1       | 2011 677                | 01.00<br>91.41 | 23.55      | 1917 200                | 4928 967                |
| 45          | 102.99   | 29.1       | 2022 175                | 91.74          | 23.55      | 192/ 920                | 4949 114                |
| 44          | 103.89   | 29.1       | 2024 405                | 01.74          | 25.55      | 1924.959                | 4546.114                |
| 45          | 104.28   | 29.1       | 3034.495                | 82.06          | 25.55      | 1930 004                | 4985 529                |
| 40          | 105.04   | 29.1       | 2056 625                | 92.57          | 23.55      | 1947 192                | 5003.928                |
| 4/          | 105.04   | 29.1       | 2067 447                | 02.00          | 23.55      | 195/ 202                | 5005.017                |
| 48          | 105.41   | 29.1       | 2079 115                | 02.33          | 20.00      | 1954.592                | 5021.039                |
| 49          | 109.78   | 29.1       | 2162 760                | 05.29          | 23.55      | 2016 291                | 5059.604                |
| 50          | 160.02   | 29.1       | 4656 596                | 126.05         | 25.55      | 2010.501                | 7625.042                |
| 51          | 280.76   | 29.1       | 11070.07                | 270.05         | 25.55      | 2200.450                | 20018-65                |
| Roof        | 380.76   | 29.1       | 11079.97                | 379.56         | 23.55      | 8938.672                | 20018.65                |

| 195.71 <u>k</u> >    | Roof       |
|----------------------|------------|
| 91.89 k              | Eloor 51   |
| 83.94 k              | Floor 50   |
| 80.07 k              | Floor 49   |
| 76.972 k             | Floor 48   |
| 73,94 k              | Floor 47   |
| 70.96 k              | Floor 46   |
| 68,05 k              | Floor 45   |
| 65.20 k              | Floor 44   |
| 62.41 k              | Floor 43   |
| 59,68 k              | Floor 42   |
| 57.01 k              | Floor 41   |
| 54,40 k              | Floor 40   |
| 51.86 k              | Floor 39   |
| 49.37 k              | Floor 38   |
| 46.95 k              | Floor 37   |
| 44.58 k>             | Floor 36   |
| 42.28 k>             | Floor 35   |
| 40.04 k>             | Floor 34   |
| 37.86 k>             | Floor 33   |
| 35.74 k>             | Floor 32   |
| 33,68 k>             | Floor 31   |
| 31.68 k>             | Floor 30   |
| 29.75 k>             | Floor 29   |
|                      |            |
| <sup>28.58</sup> k   | Floor 28   |
| 24.22 k >            | Floor 27   |
| <sup>22,67 k</sup> > | Floor 26   |
| 21,04 k>             | Floor 25   |
| 19.47 k>             | Floor 24   |
| 17.96 k >            | Floor 23   |
| 16.51 K_>            | Floor 22   |
| 15.12 k ->           | Floor 21   |
| 13.79 k              | Floor 20   |
|                      | Floor 19   |
| 10.17 k              | Floor 18   |
|                      | Floor 16   |
| 9.09 K               | Elect 15   |
| 7.10 k               | Floor 14   |
| 6 20 k               | Eloor 13   |
| 5.35 k               | Floor 12   |
| 4.63 k               | Elgor 11   |
| 3.87 k               | Floor 10   |
| 3.21 k               | Floor 9    |
| 2.61 k               | Floor 8    |
| 2.08 k               | Floor 7    |
| 1.61 k               | Floor 6    |
| 1.19 k               | Floor 5    |
| 3.52 k               | Floor 4    |
| 2.27 k               | Floor 3    |
| 4 00 4               | Floor 2    |
| 1.22 K               |            |
| 0.50 k               | Floor 1    |
|                      | V = 1760 k |

Figure 14: Seismic Equivalent Lateral Force Diagram

### Seismic Loads

The seismic loads utilized for this preliminary design were calculated for the existing structure in the Technical Report #1 according to the Equivalent Lateral Force Method found in ASCE 7-05. Please note that the period of vibration of the existing structure, 6.75 seconds, was used in the calculation of this report. The weight of the existing building was also used for the calculation of the seismic base shear. If the alternative design is to be optimized, the actual period and weight of the alternative design will have to be used to recalculate the seismic base shear. The diagram to the left provides a summary of the applied seismic loads for this preliminary design. Refer to Appendix D to view the seismic load calculations.

The New York Times Building New York, NY Technical Report #3

## Alternative Lateral System Design (Concrete Core w/ Outriggers)

The alternative to the existing lateral force-resisting system of the New York Times Building designed in this report was a concrete shear wall system with steel outriggers at the 28<sup>th</sup> and 51<sup>st</sup> levels. The design resulted in a core layout with four 65'shear walls in the East/West direction as well as twelve 10' returns and four 20' shear walls in the North/South direction. This layout was intended to minimize the impact to the existing architecture by constraining the shear walls to the elevator shafts. Please note that shear walls 2, 3, 14 and 15 had to be extended away from the elevator shafts in order to stiffen the structure in the North/South direction. In order to result in a realistic design, the thickness and f'c of the shear walls change throughout the height of the building, refer to the table to the right.

Four outriggers in each direction, depicted on the plan in green, were

added to both mechanical floors in order to reduce the concrete section from that of a pure concrete core. To view the outrigger sizes and configurations please refer to the preliminary outrigger discussion on page 23 .In addition to the outriggers, ten 18"x42" concrete coupling beams, depicted in red, were added at each level in order to prevent an overly flexible structure in the North/South direction. Please note



Figure 15: Concrete Core w/ Outriggers Layout

| Wall             | Level Range | f'c   | t (in) | l (in) |
|------------------|-------------|-------|--------|--------|
|                  | Base - 15   | 10000 | 18     | 120    |
| SW 1, 4, 5, 6,   | 15 - 30     | 10000 | 18     | 120    |
| 7, 8, 9, 10, 11, | 30 - 40     | 8000  | 18     | 120    |
| 12, 13 & 16      | 40 - 50     | 6000  | 18     | 120    |
|                  | 50 - 52     | 8000  | 18     | 120    |
|                  | Base - 15   | 10000 | 18     | 240    |
| CW 2 2           | 15 - 30     | 10000 | 18     | 240    |
| 5VV 2, 3,        | 30 - 40     | 8000  | 18     | 240    |
| 14 & 15          | 40 - 50     | 6000  | 18     | 240    |
|                  | 50 - 52     | 8000  | 18     | 240    |
|                  | Base - 15   | 10000 | 16     | 65     |
| CN/ 17 10        | 15 - 30     | 10000 | 16     | 65     |
| SW 17, 18,       | 30 - 40     | 8000  | 14     | 65     |
| 19 & 20          | 40 - 50     | 6000  | 14     | 65     |
|                  | 50 - 52     | 8000  | 14     | 65     |

| and find as |           |           |         |  |  |  |  |  |
|-------------|-----------|-----------|---------|--|--|--|--|--|
|             | Period of | Vibration |         |  |  |  |  |  |
| Load        | Mode      | Direction | T (sec) |  |  |  |  |  |
|             | 1         | N/S       | 6.44    |  |  |  |  |  |
| Wind        | 2         | E/W       | 5.69    |  |  |  |  |  |
|             | 3         | Tors.     | 4.57    |  |  |  |  |  |
|             | 1         | N/S       | 6.97    |  |  |  |  |  |
| Seismic     | 2         | E/W       | 6.23    |  |  |  |  |  |
|             | 3         | Tors.     | 4.88    |  |  |  |  |  |

| Building Drift |           |           |  |  |  |  |  |  |
|----------------|-----------|-----------|--|--|--|--|--|--|
| Load           | Direction | Dist (in) |  |  |  |  |  |  |
| Wind           | N/S       | 16.119    |  |  |  |  |  |  |
| (Case 1)       | E/W       | 16.856    |  |  |  |  |  |  |
| Soicmic        | N/S       | 8.974     |  |  |  |  |  |  |
| Seisinic       | E/W       | 8.162     |  |  |  |  |  |  |

The New York Times Building New York, NY Technical Report #3

that these beams were sized based upon the existing core floor plenum, an average of 4 feet, and the return wall thicknesses. The coupling beams strength was not considered in this preliminary design. However, the strength of the coupling beams must be considered if this alternative system is to be investigated further. A summary of the resulting period of vibration and building drifts due to the preliminary design loading are reported in the tables on the previous page. To view elevations of this design, refer to Appendix B.

## Design Assumptions

Several simplifying assumptions were made for the preliminary design of the concrete shear wall core with outriggers. First off, the center of mass, pressure, and rigidity of the structure were assumed to align with the center of geometry due to the symmetry associated to the core configuration. Also, the shear walls were assumed to be continuous throughout their entire height. However, mechanical penetrations and door openings have a negative effect on the strength of shear walls and will have to be considered for a more optimized design. It was also assumed that core configuration was uniform throughout the entire building height. This will result in impacts on the architectural layout of the core on most floors above the 28<sup>th</sup> Level. This impact must be investigated further if the design is to be optimized.

## Initial Sizing of Shear Walls

As mentioned previously, structural analysis/design software was utilized for the preliminary design of the alternative lateral systems. However, rough strength and deflection calculations were conducted in order to determine the lower level shear wall thicknesses to be used for the initial model. After comparing the both factored and un-factored lateral loads, it was assumed that the loading due Case 1 wind would control over the seismic loading for both strength and serviceability. Therefore, Case 1 wind was used for these rough calculations. Also the shear walls were assumed to have a uniform f'c of 12,000 psi. Please note that these calculations do not take into account the effects due to the outriggers.

#### Shear

Required thickness due to shear was the first calculation to be performed. All walls in each direction were assumed to carry the shear loading equally. The strength equation utilized was:

$$Vu \leq \varphi 4(f'c)^{0.5}A_{c}$$

The resulting required thicknesses were 15" for the 65' walls in the East/West direction and the 18" for the walls in the North/South direction. Refer to Appendix E to view this calculation.

#### **Overall Wind Drift**

The limitation of H/450 for wind drift was the next parameter utilized to roughly calculate the required wall thicknesses. The allowable wind deflection (19.88" for the New York Times Building) was back figured to determine a total building moment of inertia about the North/South axis. The moment of inertia due to the sixteen returns with the thickness of 18", determined from the rough required wall thickness for shear, were then subtracted from the total building moment

of inertia to obtain the required moment of inertia needed for the 65' long walls. After finding this moment of inertia, the thickness of the 65' long walls required to meet the allowable drift could be determined.

In order to conduct this calculation, several assumptions needed to be made. First of all, due to the height of the structure, 745.5 feet, deflection would be controlled by flexural deformations; shear deflections could be considered to be negligible. The moment of inertia and the elastic modulus were also assumed to be uniform thorough out the height of the NYTB. Also, effects from the outriggers were negated for this initial size calculation. Lastly, the wind loads were assumed to be applied at the center of geometry which would align with the centroid of the core section. Based on these assumptions, the structure could be treated as a simple cantilever with several point loads though out its length. The following equation was then utilized to perform the calculation of overall total moment of inertia:

$$I_{\text{Total}} = \frac{\sum[0.7P_{i}h_{i}^{2}(3H-h_{i})]}{[(6)(1.4)(0.5)E(H/450)]}$$

This equation considers the D + 0.5 L + 0.7 W load combination. However, the gravity loads were not considered for this calculation. Also, stiffness modifiers were applied in order to account for a cracked concrete section. Please note that this relationship could only be used about the North/South axis for loads applied in the East/West direction. This relationship could not be considered for loads in the North/South direction because the coupling beams cannot treated as part of a solid section. This calculation resulted in a rough thickness of 17" for each 65' wall. Refer to Appendix E for a more detailed calculation.

#### **Moment Capacity**

A shear wall flexural strength check was a third calculation conducted before a structural modeling program was utilized. As with the rough drift calculation, the moment of inertia of the concrete core about the North/South axis was utilized to determine a rough relative stiffness of each of the 65' walls. As stated previously, the height of the New York Times Building causes the building deflection to be dominated by flexural deformations resulting in the deflection to be proportional to the moment of inertia. Because stiffness and deflection are proportional, it can be correlated that the stiffness of the shear walls in the East/West direction are proportional to their moment of inertia about the North/South axis. Therefore, relative stiffness of each shear wall in the East/West direction could be roughly calculated by determining the percentage of the moment of inertia accounted for each shear wall individually. After relative stiffnesses were calculated, they were multiplied by the factored overturning moment due to Case 1 wind in order to determine a rough flexural loading required to be carried by the 65' walls. After performing a flexural design check on the 65' foot walls due to this loading, it was determined that a 17" could be designed to carry the required loading. To review this initial flexural capacity calculation, refer to Appendix E. Please note that as with the total building drift, this calculation could not be utilized for loads for wind running in North/South direction because the coupling beams cannot be treated as part of a solid section.

### **Outrigger Design**



A two-dimensional frame analysis in SAP 2000 was performed in order to size the outriggers. Before the analysis could be performed, some assumed member sizes were utilized as a base. First, the columns used were the same 30"x30" dimension as the existing columns. Flange and web thicknesses were of similar thickness to the box columns of the existing columns as well. The beams were of the same 18" depth as those used in the existing structure. Also, all members assumed a yield strength of 50 ksi. Using these size parameters, the outrigger configurations pictured above, as well as a 388' column, base to 28th floor, and a 358' column, 28th to roof, were modeled in SAP. In order for the outriggers to be considered to work efficiently, the outriggers and their respective columns should have equal stiffness. To achieve this, unit loads were applied to the columns and outriggers as shown in Figure 16. For the stiffnesses to be the same, the axial deformation on the columns must be equal to the vertical displacement of the outriggers. Element sizes were then modified for each outrigger configuration until the resulting displacements were essentially equal. The final members sizes used for this preliminary design are pictured above. Please note that the outriggers for this design were not sized for strength. If this alternative to the lateral system is to be optimized, strength must be considered in the design.



Figure 16: Unit Load Application (SAP)

| Displacement due to Unit Load |          |                 |          |  |  |  |  |  |  |
|-------------------------------|----------|-----------------|----------|--|--|--|--|--|--|
| Upper O                       | R Type A | Upper OR Type B |          |  |  |  |  |  |  |
| Col                           | 0.000328 | Col             | 0.000328 |  |  |  |  |  |  |
| OR                            | 0.000325 | OR              | 0.000328 |  |  |  |  |  |  |
| Lower O                       | R Type A | Lower O         | R Type B |  |  |  |  |  |  |
| Col                           | 0.000358 | Col             | 0.000386 |  |  |  |  |  |  |
| OR                            | 0.000356 | OR              | 0.000383 |  |  |  |  |  |  |

The New York Times Building New York, NY Technical Report #3

## **ETABS Model**



Once the initial sizes of the shear walls and outriggers were determined through the implementation of rough hand calculations and a 2-D frame analysis, a three dimensional structural model could then be produced using ETABS. The outriggers were modeled based upon the results found though the SAP analysis. All returns were initially modeled with an 18" thickness while the 65' long walls were modeled with a 17" thickness. However, it was known that concrete core with a uniform concrete compressive strength of 12,000 psi throughout its entire height would be an irrational design. Therefore, the compressive strength was lowered to 10,000 psi at level 15, then to 8,000 psi at level 30, and finally to 6,000 psi at level 40. It was assumed that the outriggers would cause more load to be transferred back into the core at the upper levels. Therefore, the concrete compressive strength was increased back up to 8,000 psi at level 50 and remained so until the core reached the roof. In addition to the lateral system, a 20" perimeter basement wall with 4,000 psi concrete was modeled in order to replicate a realistic building response at the base.

After utilizing the assumption of a rigid diaphragm for all floors, the following six load cases were applied to the center of pressure or center of mass correspondingly:

1.6 W (E/W Direction) 1.6 W (N/S Direction) 0.7W (E/W Direction) 0.7W (N/S Direction) 1.0E (E/W Direction) 1.0E (N/S Direction)

Figure 17: ETABS Model

Once a working model was developed, an iterative process went underway to modify the model until the design fell within 10% of the target period of vibration, 6.75s - 6.25s, as well as complying with the allowable building drifts due to Case 1 wind and seismic loadings.

## Results

Once the alternative design was determined to meet the set criterion of this preliminary design, an investigation was performed to determine if the shear walls were capable in meeting the required shear and flexural strengths. The following page reports the ETABS output of the shear walls at the Base Level, Level 15, 28, 29, 30, 40,50, and 51 due to Case 1 wind and seismic. Though observation, it could be determined that as assumed, Case 1 wind controlled over seismic. Spot checks were preformed for the loadings boxed in red. Other than Shear Wall 19 at Level 28, all walls were found to meet the required strength. A more in depth strength design will have to be conducted if this system is to be optimized. To view the spot check calculations, refer to Appendix F.

|           |            |           |                          |           |               |           | Fin           | al Shear Wa | II Results From ET | ABS                   |               |           |               |           |               |           |               |
|-----------|------------|-----------|--------------------------|-----------|---------------|-----------|---------------|-------------|--------------------|-----------------------|---------------|-----------|---------------|-----------|---------------|-----------|---------------|
|           |            |           | Bas                      | ie        |               |           | Leve          | el 15       |                    |                       | Leve          | 1 28      |               |           | Leve          | 29        |               |
| Direction | Shear Wall | Wind      | d <mark>(</mark> Case 1) |           | Seismic       | Win       | d (Case 1)    | 5           | eismic             | Wind                  | (Case 1)      | 5         | Seismic       | Win       | d (Case 1)    |           | Seismic       |
|           |            | Shear (k) | Moment (k-ft)            | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k)   | Moment (k-ft)      | Shear (k)             | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|           | 1          | 499.54    | 7084.22                  | -9.48     | 16.75         | 344.53    | 1984.56       | 2.97        | 56.10              | -175.30               | 434.61        | 72.39     | 789.21        | 361.75    | 5133.77       | 58.94     | 874.72        |
|           | 2          | 1363.58   | 43494.24                 | 6.68      | 196.84        | 1256.94   | 8939.46       | 30.90       | 215.67             | -719.03               | -10986.38     | 9.63      | 124.27        | 712.68    | 14942.90      | 36.09     | 293.35        |
|           | 3          | 1363.58   | 43494.24                 | 13.03     | 304.29        | 1256.94   | 8939.46       | 32.90       | 229.52             | -719.03               | -10986.39     | 4.23      | 50.90         | 712.68    | 14942.90      | 23.63     | 213.10        |
|           | 4          | 499.54    | 7084.22                  | 26.95     | 91.94         | 344.53    | 1984.56       | 29.83       | 103.56             | -175.30               | 434.60        | -72.14    | -796.61       | 361.76    | 5133.76       | -35.35    | -792.25       |
|           | 5          | 443.80    | 6271.85                  | -3.11     | -4.05         | 338.44    | 1877.56       | 1.15        | 18.99              | -264.51               | -2093.58      | 18.80     | 53.13         | 251.82    | 2403.62       | 20.14     | 59.76         |
|           | 6          | 502.12    | 6414.86                  | 5.68      | 29.57         | 396.41    | 2015.65       | 11.01       | 40.83              | -333.14               | -2193.78      | -3.36     | 12.06         | 201.66    | 2341.83       | 0.74      | 36.14         |
|           | 7          | 502.12    | 6414.86                  | -2.83     | 4.65          | 396.41    | 2015.65       | 1.56        | 22.22              | -333.14               | -2193.79      | 6.96      | 18.01         | 201.66    | 2341.82       | 11.27     | 28.99         |
| N/S       | 8          | 443.80    | 6271.85                  | 9.31      | 48.83         | 338.44    | 1877.56       | 12.28       | 45.66              | -264.51               | -2093.58      | -17.32    | -27.18        | 251.82    | 2403.64       | -9.80     | 2.92          |
|           | 9          | 443.80    | 62/1.85                  | 3.11      | 4.05          | 338.44    | 1877.56       | -1.15       | -18.99             | -264.51               | -2093.64      | -18.81    | -53.08        | 251.81    | 2403.58       | -20.10    | -59.53        |
|           | 10         | 502.12    | 6414.80                  | -5.08     | -29.57        | 396.41    | 2015.65       | -11.01      | -40.83             | -333.14               | -2193.79      | 5.35      | -12.08        | 201.67    | 2341.88       | -0.72     | -30.05        |
|           | 11         | JU2.12    | 6271.85                  | -9.21     | -4.05         | 228 //    | 1977 56       | -1.30       | -22.22             | -355.14               | -2195.75      | -0.37     | -10.02        | 201.07    | 2341.07       | 9.82      | -20.05        |
|           | 12         | 499.54    | 7084.22                  | 9.48      | -46.85        | 344 53    | 1984 56       | -2.97       | -45.00             | -175 31               | 434.18        | -72.40    | -788 78       | 362.06    | 5142 79       | -59.16    | -883 53       |
|           | 14         | 1363.58   | 43494.24                 | -6.68     | -196.84       | 1256.94   | 8939.47       | -30.90      | -215.67            | -719.05               | -10986.37     | -9.65     | -124.29       | 712.73    | 14943.37      | -36.04    | -292.76       |
|           | 15         | 1363.58   | 43494.24                 | -13.03    | -304.29       | 1256.94   | 8939.47       | -32.90      | -229.52            | -719.04               | -10986.39     | -4.25     | -50.90        | 712.73    | 14943.44      | -23.58    | -212.60       |
|           | 16         | 499.54    | 7084.22                  | -26.95    | -91.94        | 344.53    | 1984.56       | -29.83      | -103.56            | -175.31               | 434.60        | 72.13     | 796.59        | 361.79    | 5133.90       | 35.37     | 792.35        |
|           | 17         | 3557.01   | 375615.02                | 99.86     | 3997.04       | 2400.89   | 109302.05     | 77.16       | 275.40             | -2058.03              | -635.46       | 4.68      | -230.82       | 4061.98   | 122065.80     | 65.55     | 507.75        |
| - 6       | 18         | 3792.94   | 363789.40                | 28.27     | 1392.89       | 3405.55   | 111327.58     | 1.71        | 71.31              | -7596 84              | -31120.06     | -32.46    | -280.54       | -394.78   | 38146.49      | -9.54     | 51.04         |
| E/W       | 19         | 3792.94   | 262799.46                | -28.27    | -1392.84      | 3405.54   | 111327.83     | -1.71       | -71.26             | -7596.99              | -31115.81     | 32.45     | 280.74        | -394.02   | 38153.99      | 9.59      | -50.67        |
|           | 20         | 3557.01   | 375615.21                | -99.86    | -3996.98      | 2400.88   | 109302.69     | -77.16      | -275.35            | -2060.85              | -566.02       | -4.74     | 231.98        | 4059.44   | 122245.24     | -65.60    | -504.25       |
|           |            |           | Leve                     | l 30      |               |           | Leve          | el 40       |                    | Level 50              |               |           |               | Leve      | 51            |           |               |
| Direction | Shear Wall | Wind      | d (Case 1)               | :         | Seismic       | Win       | d (Case 1)    | 9           | eismic             | Wind (Case 1) Seismic |               | Win       | d (Case 1)    |           | Seismic       |           |               |
|           |            | Shear (k) | Moment (k-ft)            | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k)   | Moment (k-ft)      | Shear (k)             | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|           | 1          | 188.81    | 1524.42                  | -18.94    | -67.97        | 135 58    | 611.59        | 1.35        | 30.11              | 68.57                 | -771.80       | 19.14     | 89.11         | -79.66    | -392.94       | 48.76     | 487.79        |
|           | 2          | 783.20    | 9449.69                  | 28.66     | 223.10        | 513.26    | 2392.83       | 18.45       | 117.09             | 177.85                | -6580.79      | 17.50     | 113.36        | -397.78   | -9425.77      | 12.17     | 141.23        |
|           | 3          | 783.20    | 9449.69                  | 20.43     | 144.17        | 513.26    | 2392.83       | 19.66       | 125.65             | 177.85                | -6580.79      | 8.17      | 48.76         | -397.78   | -9425.77      | 4.85      | 55.06         |
|           | 4          | 188.82    | 1524.43                  | 45.89     | 199.95        | 135.58    | 611.58        | 17.95       | 62.12              | 68.57                 | -771.80       | -8.63     | -28.59        | -79.66    | -392.94       | -42.40    | -431.42       |
|           | 5          | 222.21    | 1545.07                  | 8.49      | 45.16         | 133.38    | 593.12        | 0.59        | 12.42              | 66.08                 | -814.14       | 10.38     | 34.04         | -127.09   | -1634.74      | 15.43     | 45.00         |
|           | 7          | 245.58    | 1598.52                  | 4.13      | 25.50         | 158.07    | 627.03        | 0.40        | 21.71              | 35.32                 | -874.02       | -2.27     | 9.91          | -181.79   | -1725.31      | -2.24     | 9.50          |
|           | 8          | 243.36    | 1545.07                  | 0.71      | 1.57          | 133.38    | 593.12        | 7.24        | 24.50              | 66.08                 | -874.01       | -5.97     | -9.64         | -127.09   | -1634 74      | -12 72    | -20.86        |
| N/S       | 9          | 222.21    | 1545.10                  | -8.53     | -45.28        | 122.20    | 593.12        | -0.59       | -12.43             | 66.08                 | -814.14       | -10.38    | -34.03        | -127.09   | -1634.75      | -15.42    | -44.99        |
|           | 10         | 245.58    | 1598.52                  | -4.13     | -25.61        | 158.67    | 637.03        | -6.46       | -21.72             | 35.32                 | -874.62       | 2.27      | -9.91         | -181.79   | -1725.32      | 2.24      | -16.25        |
|           | 11         | 245.58    | 1598.51                  | -5.48     | -22.75        | 158.67    | 637.03        | -1.05       | -14.89             | 35.32                 | -874.62       | -7.73     | -16.56        | -181.79   | -1725.32      | -5.85     | -9.49         |
|           | 12         | 222.21    | 1545.07                  | -0.72     | -1.60         | 133.38    | 593.12        | -7.24       | -24.50             | 66.08                 | -814.14       | 5.97      | 9.64          | -127.09   | -1634.74      | 12.72     | 20.87         |
|           | 13         | 188.81    | 1524.46                  | 19.05     | 68.83         | 135.58    | 611.59        | -1.35       | -30.12             | 68.57                 | -771.81       | -19.14    | -89.10        | -79.67    | -392.99       | -48.76    | -487.74       |
|           | 14         | 783.21    | 9449.65                  | -28.69    | -223.35       | 513.26    | 2392.83       | -18.45      | -117.10            | 177.85                | -6580.82      | -17.50    | -113.34       | -397.79   | -9425.87      | -12.16    | -141.18       |
|           | 15         | 783.20    | 9449.62                  | -20.44    | -144.32       | 513.26    | 2392.83       | -19.66      | -125.65            | 177.85                | -6580.82      | -8.17     | -48.75        | -397.79   | -9425.87      | -4.85     | -55.03        |
|           | 16         | 188.82    | 1524.45                  | -45.89    | -199.98       | 135.58    | 611.59        | -17.95      | -62.12             | 68.57                 | -771.80       | 8.63      | 28.59         | -79.66    | -392.95       | 42.40     | 431.43        |
|           | 17         | 2397.87   | 67752.55                 | 68.60     | 437.68        | 966.34    | -12007.88     | 43.52       | -321.74            | 1858.21               | -65036.40     | 5.08      | -306.57       | -650.35   | -34928.12     | 1.77      | -190.85       |
| F/W       | 18         | 1132.52   | 38756.51                 | -0.78     | 57.28         | 1285.08   | -11010.85     | -0.22       | -130.89            | -1147.04              | -38083.74     | -11.71    | -121.37       | -4163 19  | -35822.38     | -10.05    | -74.26        |
| 2/ **     | 19         | 1132.76   | 38756.27                 | 0.80      | -57.12        | 1285.05   | -11012.72     | 0.22        | 130.82             | -1147.07              | -38085.04     | 11.71     | 121.31        | -4163.32  | -35823.77     | 10.04     | 74.19         |
|           | 20         | 2397.71   | 67738.27                 | -68.62    | -437.92       | 900.31    | -12013.23     | -43.52      | 321.67             | 1858.18               | -65040.77     | -5.08     | 306.49        | -650.70   | -34931.24     | -1.78     | 190.79        |

The New York Times Building New York, NY Technical Report #3

## Drift and Deflection

As mentioned, one of the overall parameters for the alternatives to the existing lateral system was for the structure to achieve the same H/450 wind drift as the existing New York Times Building. Story drifts, at several levels of interest, due to both wind and seismic were also checked for h/450 and code compliance respectively. After reviewing the ETABS output, all drift were found to comply with their corresponding limitations. Please note that the D + 0.5 L + 0.7 W load combination was applied for wind drift while no load modification was implemented for seismic drift. Also, stiffness modifiers were applied as mentioned previously.

| Building Drift From Wind (Case 1) |           |            |              |  |  |  |  |  |  |
|-----------------------------------|-----------|------------|--------------|--|--|--|--|--|--|
| Direction                         | Dist (in) | H/450 (in) | Compliance ? |  |  |  |  |  |  |
| N/S                               | 16.119    | 19.88      | ok           |  |  |  |  |  |  |
| E/W                               | 16.856    | 19.88      | ok           |  |  |  |  |  |  |

|       | Story Drift Check |                            |               |           |              |            |          |           |              |  |  |
|-------|-------------------|----------------------------|---------------|-----------|--------------|------------|----------|-----------|--------------|--|--|
|       |                   |                            | Seismic       |           |              |            | Wind     |           |              |  |  |
| Level | h (ft)            |                            | Story Drift f | rom ETABS |              |            | Story Di | rift from |              |  |  |
| Lever | 11 58 (10)        | 0.015*h <sub>sx</sub> (in) | (in           | ı)        | Compliance ? | h/450 (in) | ETAB     | S (in)    | Compliance ? |  |  |
|       |                   |                            | E/W           | N/S       |              |            | E/W      | N/S       | 1            |  |  |
| 2     | 25.66             | 0.3848                     | 0.00964       | 0.00059   | ok           | 0.0570     | 0.00625  | 0.01568   | ok           |  |  |
| 15    | 12.58             | 0.1888                     | 0.00986       | 0.00119   | ok           | 0.0280     | 0.02326  | 0.02639   | ok           |  |  |
| 28    | 14.58             | 0.2188                     | 0.00117       | 0.00096   | ok           | 0.0324     | 0.02539  | 0.01970   | ok           |  |  |
| 29    | 27.50             | 0.4125                     | 0.00107       | 0.00080   | ok           | 0.0611     | 0.02318  | 0.01684   | ok           |  |  |
| 30    | 13.75             | 0.2063                     | 0.00097       | 0.00096   | ok           | 0.0306     | 0.02549  | 0.01909   | ok           |  |  |
| 40    | 13.75             | 0.2063                     | 0.00107       | 0.00119   | ok           | 0.0306     | 0.02687  | 0.02189   | ok           |  |  |
| 50    | 13.75             | 0.2063                     | 0.00100       | 0.00077   | ok           | 0.0306     | 0.02393  | 0.01530   | ok           |  |  |
| 51    | 14.42             | 0.2162                     | 0.00027       | 0.00067   | ok           | 0.0320     | 0.02360  | 0.01372   | ok           |  |  |

## Wind Case 2

As stated, Wind Case 1 was used to perform the preliminary design of this alternative lateral system. However, once the design was completed to a reasonable point due for the scope of this analysis, an investigation was performed in ETABS to examine the effects due to Wind Case 2. Upon reviewing the ETABS output, it was determined that the torsional effects from the Case 2 loading would control the design for several of the shear walls throughout the height of the structure. If this alternative to the existing lateral system is to be further optimized, the effects due to Case 2 wind load will have to be taken into account. To view the shear wall loadings from the ETABS output, refer to Appendix G.

## Model Verification

| <b>Relative Stiffness</b> | Comparison |
|---------------------------|------------|
|---------------------------|------------|

|                                   | Hand Calculations                 |                  |                   |                    |                  |                    |             |  |  |  |
|-----------------------------------|-----------------------------------|------------------|-------------------|--------------------|------------------|--------------------|-------------|--|--|--|
|                                   | Relative Stiffness About N/S Axis |                  |                   |                    |                  |                    |             |  |  |  |
| 144                               |                                   | SW               | 17 or 20 w/ Retur | ns                 | SW 1             | 8 or 19 w/ Return: | 5           |  |  |  |
| vv                                | an                                | Interior Returns | Exterior Returns  | SW 17 or 20        | Interior Returns | Exterior Returns   | SW 18 or 19 |  |  |  |
| b (in)                            |                                   | 104              | 104               | 16                 | 104              | 224                | 16          |  |  |  |
| h (in)                            |                                   | 18               | 18                | 780                | 18               | 18                 | 780         |  |  |  |
| A (in <sup>2</sup> )              | b*h                               | 1872             | 1872              | 12480              | 1872             | 4032               | 12480       |  |  |  |
| l <sub>i</sub> (in <sup>4</sup> ) | bh <sup>3</sup> /12               | 50544            | 50544             | 632736000          | 50544            | 108864             | 632736000   |  |  |  |
| d (in)                            |                                   | 390              | 162               | 0                  | 390              | 162                | 0           |  |  |  |
| N                                 |                                   | 2                | 2                 | 1                  | 2                | 2                  | 1           |  |  |  |
| I (in⁴)                           | $\Sigma(I_i + Ad^2)$              | 5.6956.E+08      | 9.8359.E+07       | 6.3274.E+08        | 5.6956.E+08      | 2.1185.E+08        | 6.3274.E+08 |  |  |  |
| Total I (in <sup>4</sup> )        |                                   |                  |                   | 1.3007.E+09        |                  |                    | 1.4141.E+09 |  |  |  |
|                                   |                                   |                  |                   |                    | Overall I        | Σ(Total I)         | 5.4296.E+09 |  |  |  |
|                                   |                                   |                  | %                 | 6 = I / Σ(Total I) |                  |                    |             |  |  |  |
|                                   |                                   |                  |                   |                    |                  | SW17 w/ R          | 0.2395      |  |  |  |
|                                   |                                   |                  | Relative          | SW18 w/ R          | 0.2605           |                    |             |  |  |  |
|                                   |                                   |                  |                   |                    | Stiffness (%)    | SW19 w/ R          | 0.2605      |  |  |  |

SW20 w/ R

0.239

| Relative Stiffness About E/W Axis |        |                |              |  |  |  |  |
|-----------------------------------|--------|----------------|--------------|--|--|--|--|
| Wall                              |        | 120" Returns   | 240" Returns |  |  |  |  |
| b (in)                            |        | 18             | 18           |  |  |  |  |
| h (in)                            |        | 120            | 240          |  |  |  |  |
| A (in <sup>2</sup> )              | b*h    | 2160           | 4320         |  |  |  |  |
| l <sub>i</sub> (in <sup>4</sup> ) | bh³/12 | 2592000        | 20736000     |  |  |  |  |
| N                                 |        | 12             | 4            |  |  |  |  |
| Total I (in <sup>4</sup> )        |        | 31104000       | 82944000     |  |  |  |  |
| Overal                            | 11     | Σ(Total I)     | 1.1405.E+08  |  |  |  |  |
|                                   | % =    | I / Σ(Total I) |              |  |  |  |  |
|                                   |        | SW1            | 0.0227       |  |  |  |  |
|                                   |        | SW2            | 0.1818       |  |  |  |  |
|                                   |        | SW3            | 0.1818       |  |  |  |  |
|                                   |        | SW4            | 0.0227       |  |  |  |  |
|                                   |        | SW5            | 0.0227       |  |  |  |  |
|                                   |        | SW6            | 0.0227       |  |  |  |  |
|                                   |        | SW7            | 0.0227       |  |  |  |  |
| Relative Sti                      | ffness | SW8            | 0.0227       |  |  |  |  |
| (%)                               |        | SW9            | 0.0227       |  |  |  |  |
|                                   |        | SW10           | 0.0227       |  |  |  |  |
|                                   |        | SW11           | 0.0227       |  |  |  |  |
|                                   |        | SW12           | 0.0227       |  |  |  |  |
|                                   |        | SW13           | 0.0227       |  |  |  |  |
|                                   |        | SW14           | 0.1818       |  |  |  |  |
|                                   |        | SW15           | 0.1818       |  |  |  |  |
|                                   |        | SW16           | 0.0227       |  |  |  |  |

In order to determine the validity of the ETABS model, a relative stiffness comparison between hand calculations and the ETABS output was performed. As stated previously, the height of the NYTB causes flexural deformations to control the lateral deflection over shear deformations. Based on this fact, stiffness can then be considered to be proportional to the moment of inertia. Therefore, the moment of inertia was taken about the North/South axis to determine the relative stiffness of the shear walls in the East/West direction. This hand calculation was also performed for each shear wall individually about the East/West axis. However, a calculation about this axis was assumed to be inaccurate because it would not take into account any effects from the coupling beams.

In order to find the relative stiffness in ETABS, a 1000 k load was placed in both the North/South and East/West directions. The relative stiffness was then calculated at Level 1 by calculating the percent total shear carried by each wall. After comparing these relative stiffnesses to the hand calculated relative stiffnesses from the moment of inertia about the North/South axis, it was determined that because the relative stiffnesses were fairly close to each other, the model could be considered to be accurate. The comparison between the relative stiffnesses of the walls in the North/South direction also confirmed the assumption that the hand calculated relative stiffnesses for that direction would be inaccurate. The comparison can be viewed in the tables above and to the right.

| Level 1   |             |            |               |  |  |  |  |  |
|-----------|-------------|------------|---------------|--|--|--|--|--|
|           | Wall        | Shear from | Relative      |  |  |  |  |  |
|           | wan         | ETABS      | Stiffness (%) |  |  |  |  |  |
|           | SW 1        | 42.22      | 0.0422        |  |  |  |  |  |
|           | SW 2        | 114.91     | 0.1149        |  |  |  |  |  |
|           | SW 3        | 114.91     | 0.1149        |  |  |  |  |  |
|           | SW 4        | 42.22      | 0.0422        |  |  |  |  |  |
|           | SW 5        | 36.41      | 0.0364        |  |  |  |  |  |
|           | SW 6        | 41.79      | 0.0418        |  |  |  |  |  |
|           | SW 7        | 41.79      | 0.0418        |  |  |  |  |  |
| Stiffness | SW 8        | 36.41      | 0.0364        |  |  |  |  |  |
| from N/S  | SW 9        | 36.41      | 0.0364        |  |  |  |  |  |
| Loading   | SW 10       | 41.79      | 0.0418        |  |  |  |  |  |
| -         | SW 11       | 41.79      | 0.0418        |  |  |  |  |  |
|           | SW 12       | 36.41      | 0.0364        |  |  |  |  |  |
|           | SW 13       | 42.22      | 0.0422        |  |  |  |  |  |
|           | SW 14       | 114.91     | 0.1149        |  |  |  |  |  |
|           | SW 15       | 114.91     | 0.1149        |  |  |  |  |  |
|           | SW 16       | 42.22      | 0.0422        |  |  |  |  |  |
|           | Total $V_y$ | 1000       |               |  |  |  |  |  |
|           | SW 17       | 242.3      | 0.2423        |  |  |  |  |  |
| Stiffness | SW 18       | 246.84     | 0.2468        |  |  |  |  |  |
| from E/W  | SW 19       | 246.84     | 0.2468        |  |  |  |  |  |
| Loading   | SW 20       | 242.3      | 0.2423        |  |  |  |  |  |
| Ŭ         | Total V.    | 1000       |               |  |  |  |  |  |

## Center of Rigidity



Figure 18: Center of Rigidity (di)

As stated previously, the center of rigidity of this alternative lateral system was assumed to align with the center of geometry, CG, and the center of mass due to the symmetry of the tower. Using the first floor relative stiffnesses calculated from the ETABS output, a hand calculation was performed using the relationship:

#### $COR = \Sigma ki^* di / \Sigma Ki$

This investigation verified that the initial assumption was valid. Refer to the figure and table above to view this calculation. The center of rigidity and center of mass reported in the ETABS output also coincided with this hand calculation and the initial assumption.

The New York Times Building New York, NY Technical Report #3

## Concrete Shear Wall Core Design Summary

A second alternative to the existing lateral system of the New York Times building was a sole concrete shear wall core system as pictured in the Figure 19. As with the concrete core and outrigger system, the core was configured to coincide with the existing architectural layout as much as possible. In the North/South direction, the core is comprised of twelve 10'-0" returns and four 20'-0" returns. The North/South direction is also tied together with ten 10'-0" and two 30'-0" 30"x36" coupling beams. The coupling beam dimensions, the returns sizes, and layout depicted above remain constant throughout the entire height of the building. Conversely, the compressive strength and wall thickness for the 65'-0" long walls in the East/West direction are modified at several heights throughout the structure. The alternative system utilizes 12,000 psi



Figure 19: Pure Concrete Core Layout

concrete from the basement to the tenth floor, 10,000 psi concrete from the eleventh to the thirtieth floor, and 8,000 psi concrete from the thirty-first to the roof. The 65' long shear walls begins at the basement with a 2'-6" thickness. At the twenty-first story, the thickness is reduced to 2'-0" and modified a final time at the forty-first level to a thickness of 1'-6". The periods of vibration due to seismic for this alternative were found to be 7.709s in the East/West direction, 6.893s in the North/South direction, and 3.265s in the torisonal direction. The overall lateral displacements due to the seismic loading were 5.44" in the East/West direction and 7.45" in the North/South direction. The periods of vibration due to wind were found to be 6.528s in the East/West direction. The overall lateral displacements due to a Case 1 wind loading were 16.75" in the North/South direction, and 10.76" in the East/West direction. In order to review the preliminary design of this alternative to the existing lateral system, refer to the Technical Report 3 authored by Benjamin Barben.

The New York Times Building New York, NY Technical Report #3

## Modified Braced Frame Core Design Summary

The third alternative lateral system investigated for the New York Times Building was a modified version of the existing lateral system. .As with the original design, this option utilizes a steel braced frame core with outriggers. However, instead of placing outriggers on the 28<sup>th</sup> and 51<sup>st</sup> mechanical floors, the alternative system was designed with a single level of W36x247outriggers on the 36<sup>th</sup> floor with two belt trusses on the East and West edges of the level, depicted on Figure 20 in purple.

The core configuration of this alternative lateral consists mostly of chevron braces. However, single diagonal braces, shown in red, were utilized were the chevron braces



Figure 20: Modified Braced Frame Core Layout

would not conform to the existing architectural layout of the core. Though the core configuration remains uniform throughout, member sizes did change with the height of the building. W14x283 braces were used from the base to the thirteenth floor, while W14x136 braces were used form the fourteenth to the twenty-seventh. The braces were changed again to HSS 16x16x 1/2 at the twenty-eighth floor and a final time to HSS 12x12x 3/8 at the forty-first floor. The column sizes of this alternative design were changed at these three levels as well. At the base of the structure, both flanges of the 30"x30" box columns had a thickness of 7 inches and both webs had a thickness of 4 inches. The flange thickness decreases by an inch at each column change while the web thickness decrease by half an inch. Moment frames were added to all levels, except the 36<sup>th</sup> floor, in order to increase the stiffness of the structure. The resulting period of vibrations for this alternative design were 5.26s in the North/South direction, 5.17s in the East/West direction, and 3.92s in the torsional direction. The overall building drift due to Case 1 wind was 16.7" in the North/South direction, and 19.8" in the East/West direction. In order to review the preliminary design of this alternative to the existing lateral system, refer to the Technical Report 3 authored by Erika Bonfanti.

The New York Times Building New York, NY Technical Report #3

## IPD/BIM Team Comparison

Once the three preliminary alternatives to the existing lateral system of the New York Times Building were completed, they were brought before the other members of the IPD/BIM Team 3 to determine their feasibility for future optimization. The first concern was with the modified braced frame core alternative. It was determined that if the outriggers were to be placed on the 36<sup>th</sup> Level, the floor would not be able to be used as optimal rentable space for Forest City Ratner. Therefore, the only possible use for the level would be a mechanical floor. This presents an issue because a single mechanical floor would not be capable of distributing heating and cooling to the required locations in an energy efficient manner. Due to this fact, Team 3 found that the modified braced frame core with outriggers on the 36<sup>th</sup> floor would be an unfeasible design and should not be investigated further.

The main concerns presented by the two concrete alternatives were very similar. The group found that both alternatives would require an architectural redesign of the existing core configuration in order to optimize a concrete solution and provide an equal amount of functional space in the core. Concerns about duct work not being able to pass thought the elevator lobbies due to the depth of the coupling beams were also expressed. One of the major concerns with both alternative designs was that the four returns which extend away in to the central corridor on the entrance level, would greatly infringe the architectural vision of transparency. This architectural issue can be seen in Figure 21 where the area in blue represents one of the returns which would negatively influence the architecture of the central corridor. If either of the concrete design alternatives is to be optimized, these architectural impacts on the New York Times Building must be considered. Also after Figure 21: Lobby Central Corridor comparing the shear wall thicknesses of the two concrete alternatives, the team determined that a concrete core alone would be less economical

two concrete alternatives, the team determined that a concrete core alone would be less economical than that of a concrete core with outriggers. This is due to the fact that the alternative design with outriggers resulted in the use of much smaller shear walls with a lower concrete compressive strength.

After a team review of the alternative lateral systems was performed, Team 3 agreed that if the lateral system of the New York Times Building was to be redesigned, a concrete solution which engaged the perimeter columns into the lateral system would be the best alternative to the existing steel braced frame core with outriggers.

The New York Times Building New York, NY Technical Report #3

### Conclusion

For the third technical report on the structural system of the New York Times Building, three alternatives to the existing lateral force-resisting system were investigated and designed in a preliminary manner. One different design was developed by each structural student participating in the alternative IPD/BIM Thesis in order to compare the feasibility of three different alternatives to the existing lateral system. The three preliminary designs were:

- Modified Braced Frame Core w/ outriggers at the 36<sup>th</sup> floor
- Pure Concrete Shear Wall Core
- Concrete Core w/ outriggers at the 28<sup>th</sup> and 51<sup>st</sup> floors

The alternative that was investigated in this report was the concrete core with outriggers system. The modified braced frame core and pure concrete shear wall core were investigated in the technical reports of Erika Bonfanti and Benjamin Barben respectively.

All the alternative systems were designed to be within 10% of the existing structure's period of vibration, 6.75s-6.25s. Also, the preliminary designs did not exceed the overall building wind drift of H/450 of the existing New York Times Building as well as seismic story drift criterion found in ASCE 7-05.

After each of the alternative lateral system designs were completed, they were brought before the IPD/BIM Team 3 in order to discuss the feasibility of optimizing any of the three preliminary designs. Team 3 first had concerns with the modified braced frame core. The team felt that the only possible use of the 36<sup>th</sup> Floor, based on the configuration of the alternative design, was that of a mechanical floor. The modified braced frame core was then determined not to be a feasible alternative because a mechanical floor on the 36<sup>th</sup> Level would not facilitate the required floors with heating, ventilating, and cooling in an energy efficient manner.

Concerns were also expressed with the designs of the two concrete solutions. The current concrete core configurations do not conform to the architectural layout of the existing core. They both currently infringe upon the architectural vision of transparency on the lobby floor by placing returns into the main central corridor. Also, their core configurations do not provide Forest City Ratner with the same amount of open rentable space as that of the existing lateral system. Therefore, it was determined that if a concrete core system was to be designed in place of the existing lateral system, an architectural redesign of the core configuration must be conducted as well. Also, the only main difference between two concrete core systems was that the concrete core with outrigger system required less concrete section to meet the same design parameters. Therefore, a concrete solution which engages the perimeter columns into the lateral system was found to be the best alternative to the existing steel lateral force resisting system.

The New York Times Building New York, NY Technical Report #3

## Appendix A – Typical Framing Plan



**33** | P a g e

The New York Times Building New York, NY Technical Report #3

## Appendix B – Alternative Design Elevations (Concrete Core w/ Outriggers)





**34** | P a g e







Figure 25: Alternative Lateral System Elevation (Grids B & D)

## Appendix C – Wind Load Calculation

| Calculated Wind Pressures in East/West Direction of Tower {Using Method 2, ASCE 7-05} |                |                             |                                                                        |                     |                                    |                       |                       |  |  |
|---------------------------------------------------------------------------------------|----------------|-----------------------------|------------------------------------------------------------------------|---------------------|------------------------------------|-----------------------|-----------------------|--|--|
|                                                                                       | Height         |                             | q <sub>z</sub> & q <sub>h</sub> (psf)                                  | External Pressure   | Internal Pressure                  | Net Pr                | essure                |  |  |
|                                                                                       | Height:        | K <sub>z</sub> <sup>a</sup> | {.00256K <sub>2</sub> K <sub>21</sub> K <sub>d</sub> V <sup>2</sup> I} | (psf)               | (psf)                              | p (p                  | osf)                  |  |  |
|                                                                                       | (-/            |                             |                                                                        | {qGC <sub>p</sub> } | {q <sub>h</sub> GC <sub>pl</sub> } | + (GC <sub>pi</sub> ) | - (GC <sub>pi</sub> ) |  |  |
|                                                                                       | 15.0           | 0.57                        | 17.40                                                                  | 14.4                | 9.6                                | 4.8                   | 23.9                  |  |  |
|                                                                                       | 33.4           | 0.72                        | 21.87                                                                  | 18.1                | 9.6                                | 8.5                   | 27.6                  |  |  |
|                                                                                       | 48.9           | 0.81                        | 24.39                                                                  | 20.1                | 9.6                                | 10.6                  | 29.7                  |  |  |
|                                                                                       | 77.8           | 0.92                        | 27.85                                                                  | 23.0                | 9.6                                | 13.4                  | 32.6                  |  |  |
|                                                                                       | 86.0*          | 0.95                        | 28.66                                                                  | 23.7                | 9.6                                | 14.1                  | 33.2                  |  |  |
|                                                                                       | 91.5           | 0.96                        | 29.18                                                                  | 24.1                | 9.6                                | 14.5                  | 33.6                  |  |  |
|                                                                                       | 105.3          | 1.00                        | 30.37                                                                  | 25.1                | 9.6                                | 15.5                  | 34.6                  |  |  |
|                                                                                       | 119.0          | 1.04                        | 31.45                                                                  | 26.0                | 9.6                                | 16.4                  | 35.5                  |  |  |
|                                                                                       | 132.8          | 1.07                        | 32.45                                                                  | 26.8                | 9.6                                | 17.2                  | 36.3                  |  |  |
|                                                                                       | 146.5          | 1.10                        | 33.37                                                                  | 27.6                | 9.6                                | 18.0                  | 37.1                  |  |  |
|                                                                                       | 160.3          | 1.13                        | 34.24                                                                  | 28.3                | 9.6                                | 18.7                  | 37.8                  |  |  |
|                                                                                       | 174.0          | 1.16                        | 35.06                                                                  | 28.9                | 9.6                                | 19.4                  | 38.5                  |  |  |
|                                                                                       | 188.4          | 1.18                        | 35.86                                                                  | 29.6                | 9.6                                | 20.0                  | 39.2                  |  |  |
|                                                                                       | 202.1          | 1.21                        | 36.59                                                                  | 30.2                | 9.6                                | 20.6                  | 39.8                  |  |  |
|                                                                                       | 215.3          | 1.23                        | 37.25                                                                  | 30.8                | 9.6                                | 21.2                  | 40.3                  |  |  |
|                                                                                       | 229.0          | 1.25                        | 37.92                                                                  | 31.5                | 9.6                                | 21.7                  | 40.9                  |  |  |
|                                                                                       | 242.0          | 1.27                        | 20.35                                                                  | 21.0                | 9.6                                | 22.5                  | 41.4                  |  |  |
|                                                                                       | 230.3          | 1.31                        | 39.75                                                                  | 32.8                | 9.6                                | 23.3                  | 42.4                  |  |  |
|                                                                                       | 284.0          | 1.33                        | 40.32                                                                  | 33.3                | 9.6                                | 23.7                  | 42.8                  |  |  |
|                                                                                       | 297.8          | 1.35                        | 40.87                                                                  | 33.7                | 9.6                                | 24.2                  | 43.3                  |  |  |
|                                                                                       | 311.5          | 1.37                        | 41.40                                                                  | 34.2                | 9.6                                | 24.6                  | 43.7                  |  |  |
|                                                                                       | 325.3          | 1.38                        | 41.91                                                                  | 34.6                | 9.6                                | 25.0                  | 44.2                  |  |  |
|                                                                                       | 339.0          | 1.40                        | 42.41                                                                  | 35.0                | 9.6                                | 25.5                  | 44.6                  |  |  |
|                                                                                       | 352.8          | 1.42                        | 42.90                                                                  | 35.4                | 9.6                                | 25.9                  | 45.0                  |  |  |
| Windward                                                                              | 366.5          | 1.43                        | 43.37                                                                  | 35.8                | 9.6                                | 26.2                  | 45.4                  |  |  |
|                                                                                       | 401.8          | 1.45                        | 45.04                                                                  | 36.2                | 9.6                                | 20.0                  | 45.3                  |  |  |
|                                                                                       | 422.4          | 1.49                        | 45.16                                                                  | 37.3                | 9.6                                | 27.7                  | 46.8                  |  |  |
|                                                                                       | 436.1          | 1.51                        | 45.58                                                                  | 37.6                | 9.6                                | 28.1                  | 47.2                  |  |  |
|                                                                                       | 449.9          | 1.52                        | 45.98                                                                  | 38.0                | 9.6                                | 28.4                  | 47.5                  |  |  |
|                                                                                       | 463.6          | 1.53                        | 46.38                                                                  | 38.3                | 9.6                                | 28.7                  | 47.9                  |  |  |
|                                                                                       | 477.4          | 1.54                        | 46.77                                                                  | 38.6                | 9.6                                | 29.0                  | 48.2                  |  |  |
|                                                                                       | 491.1          | 1.56                        | 47.15                                                                  | 38.9                | 9.6                                | 29.4                  | 48.5                  |  |  |
|                                                                                       | 504.9          | 1.57                        | 47.52                                                                  | 39.2                | 9.6                                | 29.7                  | 48.8                  |  |  |
|                                                                                       | 518.6          | 1.58                        | 47.89                                                                  | 39.5                | 9.6                                | 30.0                  | 49.1                  |  |  |
|                                                                                       | 532.4<br>E46.1 | 1.59                        | 48.25                                                                  | 39.8                | 9.6                                | 30.3                  | 49.4                  |  |  |
|                                                                                       | 559.9          | 1.62                        | 48.95                                                                  | 40.4                | 9.6                                | 30.8                  | 50.0                  |  |  |
|                                                                                       | 573.6          | 1.63                        | 49.29                                                                  | 40.7                | 9.6                                | 31.1                  | 50.3                  |  |  |
|                                                                                       | 587.4          | 1.64                        | 49.62                                                                  | 41.0                | 9.6                                | 31.4                  | 50.5                  |  |  |
|                                                                                       | 601.1          | 1.65                        | 49.95                                                                  | 41.2                | 9.6                                | 31.7                  | 50.8                  |  |  |
|                                                                                       | 614.9          | 1.66                        | 50.28                                                                  | 41.5                | 9.6                                | 31.9                  | 51.1                  |  |  |
|                                                                                       | 628.6          | 1.67                        | 50.60                                                                  | 41.8                | 9.6                                | 32.2                  | 51.3                  |  |  |
|                                                                                       | 642.4          | 1.68                        | 50.91                                                                  | 42.0                | 9.6                                | 32.5                  | 51.6                  |  |  |
|                                                                                       | 656.1          | 1.69                        | 51.22                                                                  | 42.3                | 9.6                                | 32.7                  | 51.8                  |  |  |
|                                                                                       | 669.9          | 1.70                        | 51.52                                                                  | 42.5                | 9.6                                | 33.0                  | 52.1                  |  |  |
|                                                                                       | 683.6          | 1.71                        | 51.82                                                                  | 42.8                | 9.6                                | 33.2                  | 52.3                  |  |  |
|                                                                                       | 697.4          | 1.72                        | 52.12                                                                  | 43.0                | 9.6                                | 33.5                  | 52.6                  |  |  |
|                                                                                       | 711.5          | 1.75                        | 52.42                                                                  | 43.5                | 9.6                                | 34.1                  | 52.8                  |  |  |
|                                                                                       | 745.5**        | 1.75                        | 53.12                                                                  | 43.9                | 9.6                                | 34.3                  | 53.4                  |  |  |
|                                                                                       | 802***         | 1.79                        | 54.24                                                                  | 22.4                | 9.6                                | 12.8                  | 32.0                  |  |  |
| Leeward                                                                               | All            |                             | 53.12                                                                  | -27.4               | 9.6                                | -37.0                 | -17.8                 |  |  |
| Side                                                                                  | All            |                             | 53.12                                                                  | -38.4               | 9.6                                | -47.9                 | -28.8                 |  |  |
| Roof                                                                                  | 745.5          |                             | 53.12                                                                  | -57.0               | 9.6                                | -66.6                 | -47.4                 |  |  |

\* Top of Podium

\*\* Finish Floor Elevation of Roof

\*\*\* Top of Screen Elevation (0.5 multiplier is applied to account for the ability for

wind to pass through the screen.) \* K<sub>2</sub> = 2.01(15/z<sub>g</sub>)2/ $\alpha$  {z<sub>g</sub> < 15ft} -or- K<sub>2</sub> = 2.01(z/z<sub>g</sub>)2/ $\alpha$  {15 ft < z < z<sub>g</sub>} [T 6-2, ASCE 7-05]

| Calculated Wind Pressures in North/South Direction of Tower{Using Method 2, ASCE 7-05} |         |       |                                                           |                      |                                    |                       |                       |  |  |
|----------------------------------------------------------------------------------------|---------|-------|-----------------------------------------------------------|----------------------|------------------------------------|-----------------------|-----------------------|--|--|
|                                                                                        | Height  |       | q <sub>z</sub> & q <sub>h</sub> (psf)                     | External Pressure    | Internal Pressure                  | Net Pr                | essure                |  |  |
|                                                                                        | (z)     | к,"   | {.00256K <sub>e</sub> K <sub>et</sub> K <sub>d</sub> V*I} | (psf)                | (psf)                              | p (p                  | osf)                  |  |  |
|                                                                                        |         |       |                                                           | (doc <sup>b</sup> ). | լզ <sub>հ</sub> ցշ <sub>թi</sub> յ | + (GC <sub>pi</sub> ) | - (GC <sub>pi</sub> ) |  |  |
|                                                                                        | 15.0    | 0.57  | 17.40                                                     | 14.6                 | 9.6                                | 5.0                   | 24.2                  |  |  |
|                                                                                        | 33.4    | 0.72  | 21.87                                                     | 18.3                 | 9.6                                | 8.8                   | 27.9                  |  |  |
|                                                                                        | 48.9    | 0.81  | 24.39                                                     | 20.4                 | 9.6                                | 10.9                  | 24.6                  |  |  |
|                                                                                        | 77.8    | 0.9/2 | 27.85                                                     | 23.4                 | 9.6                                | 13.8                  | 32.9                  |  |  |
|                                                                                        | 86.0*   | 0.95  | 28.66                                                     | 24.0                 | 9.6                                | 14.5                  | 33.6                  |  |  |
|                                                                                        | 91.5    | 0.96  | 29.18                                                     | 24.5                 | 9.6                                | 14.9                  | 34.0                  |  |  |
|                                                                                        | 105.3   | 1.00  | 30.37                                                     | 25.5                 | 9.6                                | 15.9                  | 35.0                  |  |  |
|                                                                                        | 119.0   | 1.04  | 31.45                                                     | 26.4                 | 9.6                                | 16.8                  | 35.9                  |  |  |
|                                                                                        | 132.8   | 1.07  | 32.45                                                     | 27.2                 | 9.6                                | 17.6                  | 36.8                  |  |  |
|                                                                                        | 146.5   | 1.10  | 33.37                                                     | 28.0                 | 9.6                                | 18.4                  | 37.5                  |  |  |
|                                                                                        | 160.3   | 113   | 34.24                                                     | 28.7                 | 9.6                                | 19.2                  | 38.3                  |  |  |
|                                                                                        | 174.0   | 1.15  | 35.06                                                     | 29.4                 | 9.6                                | 19.8                  | 39.0                  |  |  |
|                                                                                        | 188.4   | 1.18  | 35.86                                                     | 30.1                 | 9.6                                | 20.5                  | 39.6                  |  |  |
|                                                                                        | 202.1   | 1.21  | 36.59                                                     | 30.7                 | 9.6                                | 21.1                  | 40.2                  |  |  |
|                                                                                        | 215.3   | 1.23  | 37.25                                                     | 31.2                 | 9.6                                | 21.7                  | 40.8                  |  |  |
|                                                                                        | 229.0   | 1.25  | 37 92                                                     | 31.8                 | 9.6                                | 22.2                  | 41.4                  |  |  |
|                                                                                        | 247.8   | 1.22  | 38 55                                                     | 32.3                 | 9.6                                | 22.8                  | 419                   |  |  |
|                                                                                        | 256.5   | 1.29  | 39.17                                                     | 32.8                 | 9.6                                | 23.3                  | 42.4                  |  |  |
|                                                                                        | 270.3   | 1.31  | 39.75                                                     | 33.3                 | 9.6                                | 23.8                  | 42.9                  |  |  |
|                                                                                        | 284.0   | 1.33  | 40.32                                                     | 33.8                 | 9.6                                | 24.3                  | 43.4                  |  |  |
|                                                                                        | 297.8   | 1.35  | 40.87                                                     | 34.3                 | 9.6                                | 24.7                  | 43.8                  |  |  |
|                                                                                        | 311.5   | 1.37  | 4140                                                      | .34.7                | 9.6                                | 25.2                  | 44.3                  |  |  |
|                                                                                        | 325.3   | 1.38  | 41.91                                                     | 35.1                 | 9.6                                | 25.6                  | 44.7                  |  |  |
|                                                                                        | 339.0   | 1.40  | 42.41                                                     | 35.6                 | 9.6                                | 26.0                  | 45.1                  |  |  |
|                                                                                        | 352.8   | 1.42  | 42.90                                                     | 36.0                 | 9.6                                | 26.4                  | 45.5                  |  |  |
|                                                                                        | 366.5   | 1.43  | 43.37                                                     | 36.4                 | 9.6                                | 26.8                  | 45.9                  |  |  |
| Windward                                                                               | 380.7   | 1.45  | 43.84                                                     | .36.8                | 9.6                                | 27.2                  | 46.3                  |  |  |
|                                                                                        | 401.8   | 1.47  | 44.52                                                     | 37.3                 | 9.6                                | 27.8                  | 46.9                  |  |  |
|                                                                                        | 422.4   | 1.49  | 45.16                                                     | 37.9                 | 9.6                                | 28.3                  | 47.4                  |  |  |
|                                                                                        | 436.1   | 1.51  | 45.58                                                     | 38.2                 | 9.6                                | 28.7                  | 47.8                  |  |  |
|                                                                                        | 449.9   | 1.52  | 45.98                                                     | 38.6                 | 9.6                                | 29.0                  | 48.1                  |  |  |
|                                                                                        | 463.6   | 1.53  | 46.38                                                     | 38.9                 | 9.6                                | 29.3                  | 48.5                  |  |  |
|                                                                                        | 477.4   | 1.54  | 46.77                                                     | 39.2                 | 9.6                                | 29.7                  | 48.8                  |  |  |
|                                                                                        | 491.1   | 1.56  | 47.15                                                     | 39.5                 | 9.6                                | 30.0                  | 49.1                  |  |  |
|                                                                                        | 504.9   | 1.57  | 47.52                                                     | 39.9                 | 9.6                                | 30.3                  | 49.4                  |  |  |
|                                                                                        | 518.6   | 1.58  | 47.89                                                     | 40.2                 | 9.6                                | 30.6                  | 49.7                  |  |  |
|                                                                                        | 532.4   | 1.59  | 48.25                                                     | 40.5                 | 9.6                                | 30.9                  | 50.0                  |  |  |
|                                                                                        | 546.1   | 1.61  | 48.60                                                     | 40.8                 | 9.6                                | 31.2                  | 50.3                  |  |  |
|                                                                                        | 573.6   | 1.62  | 49.29                                                     | 41.3                 | 9.6                                | 31.8                  | 50.9                  |  |  |
|                                                                                        | 587.4   | 1.64  | 49.62                                                     | 41.6                 | 96                                 | 32.1                  | 51.2                  |  |  |
|                                                                                        | 601.1   | 1.65  | 49.95                                                     | 41.9                 | 9.6                                | 32.3                  | 51.5                  |  |  |
|                                                                                        | 614.9   | 1.66  | 50.28                                                     | 42.2                 | 96                                 | 32.6                  | 517                   |  |  |
|                                                                                        | 629.6   | 1.00  | 50.20                                                     | 42.4                 | 9.6                                | 32.0                  | 52.0                  |  |  |
|                                                                                        | 642.4   | 1.07  | 50.00                                                     | 42.7                 | 9.6                                | 32.5                  | 52.0                  |  |  |
|                                                                                        | 656.4   | 1.00  | 50.51                                                     | 72.7                 | 5.0                                | 22.4                  | 52.5                  |  |  |
|                                                                                        | 650.1   | 1.05  | 51.22                                                     | 45.0                 | 5.6                                | 22.4                  | 52.5                  |  |  |
|                                                                                        | 683.G   | 1.70  | 51.52                                                     | 43.2                 | 9.6                                | 22.0                  | 52.8                  |  |  |
|                                                                                        | 697.4   | 1.71  | 52.02                                                     | 43.5                 | 9.6                                | 34.1                  | 53.0                  |  |  |
|                                                                                        | 711 5   | 1.72  | 52.42                                                     | 44.0                 | 9.6                                | 34.4                  | 52.5                  |  |  |
|                                                                                        | 722.1   | 1.75  | 52.42                                                     | 44.0                 | 9.6                                | 34.4                  | 52.0                  |  |  |
|                                                                                        | 745.5** | 1.75  | 53.12                                                     | 44.5                 | 9.6                                | 35.0                  | 54.1                  |  |  |
|                                                                                        | 819***  | 1.80  | 54.57                                                     | 22.9                 | 9.6                                | 13.3                  | 32.4                  |  |  |
| Leeward                                                                                | All     |       | 53.12                                                     | -24.8                | 9.6                                | -34,4                 | -15.3                 |  |  |
| Side                                                                                   | All     |       | 53.12                                                     | -38.4                | 9.6                                | -47.9                 | -28.8                 |  |  |
| Boof                                                                                   | 745 5   |       | 53.12                                                     | -57.9                | 9.6                                | -67.5                 | .483                  |  |  |

\* Top of Podium \*\* Finish Floor Elevation of Roof

\*\*\* Top of Screen Elevation (0.5 multiplier is applied to account for the ability for

wind to pass through the screen.) <sup>a</sup> K<sub>z</sub> = 2.01(15/z<sub>g</sub>)2/ $\alpha$  {z<sub>g</sub> < 15ft} -or- K<sub>z</sub> = 2.01(z/z<sub>g</sub>)2/ $\alpha$  {15 ft < z < z<sub>g</sub>} [T 6-2, ASCE 7-05]

| Method 2 Wind Load Design Variables |       |          |                   |  |  |  |
|-------------------------------------|-------|----------|-------------------|--|--|--|
| Variable                            | Value | Unit     | Reference         |  |  |  |
| V                                   | 110   | miles/hr | ASCE 7 05 6.5.4   |  |  |  |
| K <sub>d</sub>                      | 0.85  |          | ASCE 7-05 6.5.4.4 |  |  |  |
| Occupancy Cat.                      | Ш     |          | IBC Table 1604.5  |  |  |  |
|                                     | 1.15  |          | ASCE 7-05 6.5.5   |  |  |  |
| Surf. Rough. Cat.                   | В     |          | ASCE 7-05 6.5.2   |  |  |  |
| Exp. Cat.                           | В     |          | ASCE 7-05 6.5.6   |  |  |  |
| K <sub>zt</sub>                     | 1     |          | ASCE 7-05 6.5.7   |  |  |  |
| α                                   | 7.0   |          | ASCE 7 05 6.5.6.6 |  |  |  |
| Ze                                  | 1200  |          | ASCE 7-05 6.5.6.6 |  |  |  |

| Gust Factor {Tower} |                                                                                                   |             |              |          |                    |                          |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------|-------------|--------------|----------|--------------------|--------------------------|--|--|--|
| Variable            | Equation                                                                                          | Dire<br>E/W | ction<br>N/S | Unit     | Reference (ASCE 7) | Comments                 |  |  |  |
| $n_1(f_{ni})$       | 150/h                                                                                             | 0.20121     | 0.20121      |          | C6.5.8             | Flexible Structure       |  |  |  |
| gQ = gv             |                                                                                                   | 3.4         | 3.4          |          | 6.5.8.2            |                          |  |  |  |
| gr                  | (2LN(3600n <sub>1</sub> )) <sup>1/2</sup> +<br>(0.577/(2LN(3600n <sub>1</sub> )) <sup>1/2</sup>   | 3.7881      | 3.7881       |          | 6.5.8.2            |                          |  |  |  |
| h                   |                                                                                                   | 745.5       | 745.5        | ft       |                    |                          |  |  |  |
| z bar               | .6h                                                                                               | 447.3       | 447.3        | ft       |                    |                          |  |  |  |
| Z <sub>min</sub>    |                                                                                                   | 30          | 30           | ft       | Table 6-2          | $z bar \ge z_{min} (ok)$ |  |  |  |
| с                   |                                                                                                   | 0.3         | 0.3          |          | Table 6-2          |                          |  |  |  |
| l <sub>z</sub>      | c(33/z) <sup>1/6</sup>                                                                            | 0.1943      | 0.1943       |          | 6.5.8.1            |                          |  |  |  |
| l                   |                                                                                                   | 320         | 320          | ft       | Table 6-2          |                          |  |  |  |
| ε                   |                                                                                                   | 0.3333      | 0.3333       |          | Table 6-2          |                          |  |  |  |
| Ļ                   | ٤(z/33) <sup>ε</sup>                                                                              | 762.98      | 762.98       | ft       | 6.5.8.1            |                          |  |  |  |
| В                   |                                                                                                   | 194.00      | 157.00       | ft       |                    |                          |  |  |  |
| L                   |                                                                                                   | 157.00      | 194.00       | ft       |                    |                          |  |  |  |
| Q                   | (1/(1+0.63((B+h)/L <sub>2</sub> ) <sup>0.63</sup> ) <sup>1/2</sup>                                | 0.76288     | 0.76690      |          | 6.5.8.1            |                          |  |  |  |
| V                   |                                                                                                   | 110         | 110          | miles/hr | 6.5.4              |                          |  |  |  |
| b bar               |                                                                                                   | 0.45        | 0.45         |          | Table 6-2          |                          |  |  |  |
| α bar               |                                                                                                   | 0.25        | 0.25         |          | Table 6-2          |                          |  |  |  |
| Vz                  | b(z/33) <sup>a</sup> V(88/60)                                                                     | 139.3022    | 139.3022     | ft/s     | 6.5.8.2            |                          |  |  |  |
| N <sub>1</sub>      | n <sub>1</sub> L <sub>z</sub> /V <sub>z</sub>                                                     | 1.1020      | 1.1020       |          | 6.5.8.2            |                          |  |  |  |
| Rn                  | 7.47N <sub>1</sub> /(1+10.3N <sub>1</sub> ) <sup>5/3</sup>                                        | 0.12474     | 0.12474      |          | 6.5.8.2            |                          |  |  |  |
| η (R <sub>h</sub> ) | 4.6n1h/V2                                                                                         | 4.9533      | 4.9533       |          | 6.5.8.2            |                          |  |  |  |
| R <sub>h</sub>      | 1/η - (1/2η <sup>2</sup> )(1-e <sup>-2η</sup> )                                                   | 0.18151     | 0.18151      |          | 6.5.8.2            |                          |  |  |  |
| η (R <sub>B</sub> ) | 4.6n <sub>1</sub> B/V <sub>2</sub>                                                                | 1.2890      | 1.0431       |          | 6.5.8.2            |                          |  |  |  |
| R <sub>R</sub>      | 1/η - (1/2η <sup>2</sup> )(1-e <sup>-2η</sup> )                                                   | 0.49772     | 0.55619      |          | 6.5.8.2            |                          |  |  |  |
| η (R <sub>L</sub> ) | 15.4n <sub>1</sub> L/V <sub>2</sub>                                                               | 3.4923      | 4.3153       |          | 6.5.8.2            |                          |  |  |  |
| RL                  | 1/η - (1/2η <sup>2</sup> )(1-e <sup>-2η</sup> )                                                   | 0.24539     | 0.20489      |          | 6.5.8.2            |                          |  |  |  |
| β                   |                                                                                                   | 0.01        | 0.01         |          | C6.5.8             |                          |  |  |  |
| R                   | $((1/\beta)(R_nR_hR_B(.53+0.47R_L)))^{1/2}$                                                       | 0.852786    | 0.888092     |          | 6.5.8.2            |                          |  |  |  |
| G <sub>f</sub>      | $\begin{array}{c} 0.925(1{+}1.7l_z(g_Q^{2}Q^2{+}g_R^{2}R^2)^{1/2})/\\ (1{+}1.7g_y _z)\end{array}$ | 1.032       | 1.048        |          | 6.5.8.2            |                          |  |  |  |

| E/W Wind Direction (Tower) {h/L >1.0 & q < 10} |                              |           |        |  |  |  |  |
|------------------------------------------------|------------------------------|-----------|--------|--|--|--|--|
| L/B                                            | Wall Pressure Coeff. (Cp)    |           |        |  |  |  |  |
|                                                | Windward                     | Side      |        |  |  |  |  |
| 0.809                                          | 0.8                          | -0.5      | -0.7   |  |  |  |  |
| h/L                                            | Roof Pressure Coeff. (Cp)    |           |        |  |  |  |  |
|                                                | Roof Area (ft <sup>2</sup> ) | Reduction | Ср     |  |  |  |  |
| 4.748                                          | 27400                        | 0.8       | -1.040 |  |  |  |  |
| Internal Pressure                              |                              |           |        |  |  |  |  |
| GCpi                                           | 0.18                         |           |        |  |  |  |  |
| [F 6-5, ASCE 7-05]                             |                              |           |        |  |  |  |  |

| N/S Wind Direction (Tower) $\{h/L \ge 1.0 \& \theta \le 10\}$ |                           |           |                |  |  |  |
|---------------------------------------------------------------|---------------------------|-----------|----------------|--|--|--|
| L/B                                                           | Wall Pressure Coeff. (Cp) |           |                |  |  |  |
|                                                               | Windward                  | Leeward   | Side           |  |  |  |
| 1.236                                                         | 0.8                       | -0.453    | -0.7           |  |  |  |
| h/L                                                           | Roof Pressure Coeff. (Cp) |           |                |  |  |  |
|                                                               | Roof Area (ft')           | Reduction | Ср             |  |  |  |
| 3.843                                                         | 27400                     | 0.8       | <b>-1</b> .040 |  |  |  |
| Internal Pressure                                             |                           |           |                |  |  |  |
| GCpi                                                          | 0.18                      |           |                |  |  |  |
| [F 6-5, ASCE 7-05                                             | 5]                        |           |                |  |  |  |

## Appendix D – Seismic Load Calculation

|                       | Soil Cla                              | ssification                        |  |  |  |  |
|-----------------------|---------------------------------------|------------------------------------|--|--|--|--|
|                       |                                       |                                    |  |  |  |  |
| NYCBC:                | 2-65 (medium hard rock)               | recommended by geotechnical report |  |  |  |  |
|                       | 4-65 (soft rock)                      | in areas of lower bearing capacity |  |  |  |  |
| ASCE 7-05:            | seismic design category C             | conservative estimate              |  |  |  |  |
|                       |                                       |                                    |  |  |  |  |
|                       | Importance factor= 1.25               |                                    |  |  |  |  |
|                       | •                                     |                                    |  |  |  |  |
| / : USSS C            | Spectral Respo                        | onse Acceleration                  |  |  |  |  |
| (using USGS G         | round Motion Parameter Calci          | ulator)                            |  |  |  |  |
| latitude: 40.75       | $F_a = 1.2$                           |                                    |  |  |  |  |
| longitude: -73.       | .990130 F <sub>v</sub> = 1.7          |                                    |  |  |  |  |
|                       |                                       |                                    |  |  |  |  |
|                       | site class C                          |                                    |  |  |  |  |
| T=0.2s                | T=1.0s                                | 0.110                              |  |  |  |  |
| S <sub>MS</sub>       | $0.436 \text{ g} S_{M1}$              | 0.119 g                            |  |  |  |  |
| JDS                   | 0.291 g 3 <sub>D1</sub>               | 0.08 g                             |  |  |  |  |
| ASCE 7-05:            | S <sub>DS</sub> -> SDC B T 11.6-1     |                                    |  |  |  |  |
|                       | S <sub>D1</sub> -> SDC B T 11.6-2     | therefore, use site class C        |  |  |  |  |
|                       |                                       |                                    |  |  |  |  |
|                       | Period                                | of Building                        |  |  |  |  |
| T. <= 0.8T. =         | 0 2199                                |                                    |  |  |  |  |
| T.                    | 0.2749 S at /S as                     |                                    |  |  |  |  |
| . 3                   | 0.27 10 - 017 - 03                    |                                    |  |  |  |  |
| $T_a = C_t * h_n^x =$ | 2.991                                 |                                    |  |  |  |  |
| С,                    | 0.02 T 12.2.1.B                       |                                    |  |  |  |  |
| X                     | 0.75 <i>T 11.5-1</i>                  |                                    |  |  |  |  |
| h                     | 793.8                                 |                                    |  |  |  |  |
| T(Existing)           | 6.75 Thornton                         | Tomasetti                          |  |  |  |  |
| Seismic Base Shear    |                                       |                                    |  |  |  |  |
| V = C * W             | 1750 g k 1201                         |                                    |  |  |  |  |
| v – C <sub>S</sub> VV | 1/33.0  K $12.6-10.1119 S \sim //R/I$ |                                    |  |  |  |  |
| C <sub>s</sub> = min{ | $0.00/6  S_{} //T * R/$               | //) (1 17 0.0027                   |  |  |  |  |
|                       | $5_{D1}/(r_a N)$                      | use 0.01 for C                     |  |  |  |  |
| R                     | 3.25 T1221R                           |                                    |  |  |  |  |
| 1                     | 1.25 T 11.5-1                         |                                    |  |  |  |  |
|                       |                                       |                                    |  |  |  |  |

|       |           |                | Точ    | ver Weight by  | Floor     |                     |                    |                        |      |   |
|-------|-----------|----------------|--------|----------------|-----------|---------------------|--------------------|------------------------|------|---|
|       |           | W <sub>i</sub> | (psf)  |                |           |                     |                    |                        | Ľ    | _ |
| floor | area (sf) | floor          | façade | wall area (sf) | W;(#)     | h <sub>x</sub> (ft) | h ; (ft)           | w,*h, <sup>k</sup>     |      |   |
| 1     | 96625     | 113            | 25     | 18893          | 11390943  | 26.9896             | 27.0               | 8.298E+09              |      |   |
| 2     | 96625     | 113            | 25     | 10828          | 11189329  | 15.4688             | 42.5               | 2.017E+10              | - 1  | _ |
| 3     | 96625     | 113            | 25     | 10828          | 11189329  | 15.4688             | 57.9               | 3.755E+10              |      |   |
| 4     | 96625     | 113            | 25     | 10026          | 11169276  | 14 3229             | 72.3               | 5.83E+10               | - F  | _ |
| 5     | 21550     | 113            | 25     | 9625           | 2675775   | 12 75               | 86.0               | 1.070E+10              | - H  |   |
| 6     | 21550     | 112            | 25     | 9625           | 2675775   | 12.75               | 00.0               | 2.662E+10              | - F  |   |
| 7     | 21550     | 113            | 2.5    | 9625           | 2073773   | 12.75               | 112 5              | 2.002E+10              | - F  |   |
| /     | 21330     | 115            | 2.5    | 9025           | 2075775   | 12.75               | 115.5              | 5.447E+10              |      |   |
| 8     | 21550     | 113            | 25     | 9625           | 20/5//5   | 13.75               | 127.3              | 4.333E+10              |      |   |
| 9     | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 141.0              | 5.32E+10               |      |   |
| 10    | 21550     | 113            | 25     | 9625           | 26/5//5   | 13.75               | 154.8              | 6.408E+10              | _ I- |   |
| 11    | 21550     | 113            | 25     | 9975           | 2684525   | 14.25               | 169.0              | 7.667E+10              |      |   |
| 12    | 21550     | 113            | 25     | 9275           | 2667025   | 13.25               | 182.3              | 8.859E+10              | ſ    |   |
| 13    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 196.0              | 1.028E+11              |      |   |
| 14    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 209.8              | 1.177E+11              | - F  | 1 |
| 15    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 223.5              | 1.337E+11              |      |   |
| 16    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 237.3              | 1.506E+11              | - H  | _ |
| 17    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 251.0              | 1.686E+11              |      |   |
| 18    | 21550     | 112            | 25     | 9625           | 2675775   | 13 75               | 264.8              | 1.876F+11              | ŀ    |   |
| 10    | 21550     | 112            | 25     | 9625           | 2675775   | 13.75               | 204.0              | 2.075E±11              |      | _ |
| 15    | 21550     | 115            | 25     | 5025           | 2075775   | 13.75               | 270.5              | 2.0736+11              |      |   |
| 20    | 21550     | 113            | 25     | 9625           | 26/5/75   | 13./5               | 292.3              | 2.285E+11              |      |   |
| 21    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 306.0              | 2.505E+11              |      |   |
| 22    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 319.8              | 2.736E+11              |      | _ |
| 23    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 333.5              | 2.976E+11              |      |   |
| 24    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 347.3              | 3.227E+11              |      |   |
| 25    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 361.0              | 3.487E+11              |      |   |
| 26    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 374.8              | 3.758E+11              | H    |   |
| 27    | 21550     | 113            | 25     | 9275           | 2667025   | 13.25               | 388.0              | 4.015E+11              |      | _ |
| 28    | 21550     | 105            | 25     | 19250          | 2744000   | 27.5                | 415 5              | 4 737F+11              | - I  |   |
| 20    | 21550     | 113            | 2.5    | 0625           | 2675775   | 12.75               | 420.2              | 4.025.14               |      |   |
| 29    | 21550     | 113            | 25     | 9625           | 20/5//5   | 13.75               | 429.3              | 4.93E+11               |      |   |
| 30    | 21550     | 113            | 25     | 9025           | 20/5//5   | 12.75               | 443.0              | 5.251E+11<br>E E03E-44 |      |   |
| 31    | 21550     | 113            | 25     | 9625           | 20/5//5   | 13.75               | 456.8              | 5.582E+11              |      |   |
| 32    | 21550     | 113            | 25     | 9025           | 2013113   | 10.75               | 470.5              | 0.9230+11              |      |   |
| 33    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 484.3              | 0.275E+11              |      |   |
| 34    | 21550     | 113            | 25     | 9625           | 26/5/75   | 13.75               | 498.0              | 0.030E+11              |      |   |
| 35    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 511.8              | 7.008E+11              |      |   |
| 36    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 525.5              | 7.389E+11              | 1    |   |
| 37    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 539.3              | 7.781E+11              |      |   |
| 38    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 553.0              | 8.183E+11              | H    |   |
| 39    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 566.8              | 8.595E+11              |      | _ |
| 40    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 580.5              | 9.017F+11              | ŀ    |   |
| 41    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 594.3              | 9.449E+11              | ŀ    | _ |
| 42    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 608.0              | 9.891F+11              | ŀ    |   |
| 43    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 621.8              | 1.034E+12              | ŀ    | _ |
| 44    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 635.5              | 1.081E+12              | H    |   |
| 45    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 649.3              | 1.128F+12              | ŀ    | _ |
| 46    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 663.0              | 1.176E+12              | ļ    |   |
| 47    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 676.8              | 1.225E+12              | ŀ    | _ |
| 48    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 690.5              | 1.276E+12              | ļ    |   |
| 49    | 21550     | 113            | 25     | 9625           | 2675775   | 13.75               | 704.3              | 1.327E+12              |      |   |
| 50    | 21550     | 113            | 25     | 10267          | 2691816.7 | 14.6667             | 718.9              | 1.391E+12              | ŀ    |   |
| 51    | 21550     | 105            | 25     | 18958          | 2736708.3 | 27.0833             | 746.0              | 1.523E+12              | ŀ    | _ |
| 52    | 21550     | 200            | 25     | 33491          | 5147266.5 | 47.8438             | 793.8              | 3.244E+12              |      |   |
|       |           |                |        | ΣW             | 175094 02 | k                   | Σw.*h <sup>k</sup> | 2 0175+12              | L.   |   |

| Lateral Se             | ismic Force |
|------------------------|-------------|
| k=                     | 2.0         |
| C                      | F.          |
| 0.0003                 | 0 5006      |
| 0.0007                 | 1.217       |
| 0.0013                 | 2 265       |
| 0.0020                 | 3 518       |
| 0.0007                 | 1.1940      |
| 0.0009                 | 1 606       |
| 0.0012                 | 2.080       |
| 0.0015                 | 2.614       |
| 0.0018                 | 3,2096      |
| 0.0022                 | 3.866       |
| 0.0026                 | 4.626       |
| 0.0030                 | 5.345       |
| 0.0035                 | 6.2018      |
| 0.0033                 | 7 102       |
| 0.0040                 | 8.064       |
| 0.0040                 | 9.004       |
| 0.0052                 | 10 1709     |
| 0.0058                 | 11,216      |
| 0.0084                 | 11.510      |
| 0.0071                 | 12.322      |
| 0.0078                 | 13./88      |
| 0.0086                 | 15.1104     |
| 0.0094                 | 16.505      |
| 0.0102                 | 17.956      |
| 0.0111                 | 19.467      |
| 0.0120                 | 21.0388     |
| 0.0129                 | 22.672      |
| 0.0138                 | 24.224      |
| 0.0162                 | 28.581      |
| 0.0169                 | 29.7459     |
| 0.0180                 | 31.682      |
| 0.0191                 | 33.679      |
| 0.0203                 | 35.738      |
| 0.0215                 | 37.8570     |
| 0.0228                 | 40.037      |
| 0.0240                 | 42.279      |
| 0.0253                 | 44.581      |
| 0.0267                 | 46.9447     |
| 0.0281                 | 49.369      |
| 0.0295                 | 51.855      |
| 0.0309                 | 57,002      |
| 0.0324                 | 59.678      |
| 0.0355                 | 62.408      |
| 0.0370                 | 65.199      |
| 0.0387                 | 68.0504     |
| 0.0403                 | 70.963      |
| 0.0420                 | 73.937      |
| 0.0437                 | 76.972      |
| 0.0455                 | 80.0682     |
| 0.0477                 | 83.938      |
| 0.0522                 | 91.889      |
| 0.1112                 | 195./06     |
| V= ΣF <sub>x</sub> (k) | 1759.8      |

## Appendix E – Initial Rough Hand Calculations

| -            | INMAL SHEAR WALL Thickness - SHEAR                  |
|--------------|-----------------------------------------------------|
|              | BASE STREATS (CASE   WIND)                          |
| on Pad       | E/W 9336 K × 1.10 = 14938 K                         |
| omputatio    | 4/5 -> 7438 × 1.6 = 11901 K                         |
| ingineer's C | USING VUE & diffe Acm                               |
| LER          | Assume fir = 1200 psi                               |
| TAEDI        | H/s                                                 |
| S            | (11901)(1000) = (b.75)(4) JT2000 Acw                |
|              | $A_{\rm CM} = 562(3, 6, \pi^2)$                     |
| -            | LENGHT OF ALL RENTURNS 4(240) + B(120) = 1920"      |
|              | trag = Acri/L = 18, 86" -> SAT 18"                  |
|              | ASSUME BEIN,<br>CAN TAKE                            |
|              | E/W                                                 |
|              | (14938)(1000) = (0.75)(4) JI2000 Acm Acm = 45454.9" |
|              | LENGHT OF (4) 65' WALLS 4(780) = 3120"              |
|              | treg= 14,56"                                        |
|              |                                                     |
| -            |                                                     |

|            | E/W Delta Multiplier                          |                           |                  |  |  |  |  |
|------------|-----------------------------------------------|---------------------------|------------------|--|--|--|--|
| Loval      | Hoight (b)                                    | Unfactored E/W            | E/W Delta        |  |  |  |  |
| Level      | neight (hi)                                   | Wind Load (Case 1)        | Multiplier       |  |  |  |  |
| 2          | 25.66                                         | 181.35                    | 8520782          |  |  |  |  |
| 3          | 41.13                                         | 142.66                    | 17102248         |  |  |  |  |
| 4          | 56.59                                         | 141.97                    | 3200419 <b>1</b> |  |  |  |  |
| 5          | 70.92                                         | 137.24                    | 48259858         |  |  |  |  |
| 6          | 86.00                                         | 137.36                    | 70538/116        |  |  |  |  |
| 7          | 08.42                                         | 130.09                    | 925965410        |  |  |  |  |
| 0          | 112.17                                        | 143.37                    | 1000541          |  |  |  |  |
| •          | 112.17                                        | 142.57                    | 122654262        |  |  |  |  |
| 9          | 125.92                                        | 144.57                    | 156192418        |  |  |  |  |
| 10         | 139.67                                        | 146.61                    | 193609333        |  |  |  |  |
| 11         | 153.42                                        | 148.51                    | 235094783        |  |  |  |  |
| 12         | 167.17                                        | 150.31                    | 280631143        |  |  |  |  |
| 13         | 180.92                                        | 158.52                    | 344360985        |  |  |  |  |
| 14         | 195.83                                        | 153.68                    | 388314453        |  |  |  |  |
| 15         | 208.42                                        | 148.56                    | 422556642        |  |  |  |  |
| 16         | 222.17                                        | 156.61                    | 502723360        |  |  |  |  |
| 17         | 235.92                                        | 158.01                    | 568048873        |  |  |  |  |
| 18         | 249.67                                        | 159.36                    | 637206845        |  |  |  |  |
| 19         | 263.42                                        | 160.65                    | 710146607        |  |  |  |  |
| 20         | 277.17                                        | 161.90                    | 786814283        |  |  |  |  |
| 21         | 290.92                                        | 163.11                    | 867153016        |  |  |  |  |
| 22         | 304.67                                        | 164.28                    | 951103167        |  |  |  |  |
| 23         | 318.42                                        | 165.41                    | 1038602489       |  |  |  |  |
| 24         | 332.17                                        | 166.51                    | 1129586285       |  |  |  |  |
| 25         | 345.92                                        | 167.58                    | 1223987544       |  |  |  |  |
| 26         | 359.67                                        | 168.61                    | 1321/3/069       |  |  |  |  |
| 27         | 3/3.42                                        | 261.01                    | 1406138626       |  |  |  |  |
| 20         | 300.00                                        | 201.91                    | 2555216605       |  |  |  |  |
| 30         | 415.50                                        | 173.48                    | 1865112/58       |  |  |  |  |
| 31         | 423.23                                        | 174.37                    | 1981561555       |  |  |  |  |
| 32         | 456.75                                        | 175.25                    | 2100816535       |  |  |  |  |
| 33         | 470.50                                        | 176.10                    | 2222793917       |  |  |  |  |
| 34         | 484.25                                        | 176.94                    | 2347408758       |  |  |  |  |
| 35         | 498.00                                        | 177.76                    | 2474574707       |  |  |  |  |
| 36         | 511.75                                        | 178.57                    | 2604204052       |  |  |  |  |
| 37         | 525.50                                        | 179.36                    | 2736207767       |  |  |  |  |
| 38         | 539.25                                        | 180.14                    | 2870495551       |  |  |  |  |
| 39         | 553.00                                        | 180.90                    | 3006975872       |  |  |  |  |
| 40         | 566.75                                        | 181.65                    | 3145556002       |  |  |  |  |
| 41         | 580.50                                        | 182.39                    | 3286142052       |  |  |  |  |
| 42         | 594.25                                        | 183.11                    | 3428639006       |  |  |  |  |
| 43         | 608.00                                        | 183.83                    | 3572950752       |  |  |  |  |
| 44         | 621.75                                        | 184.53                    | 3718980111       |  |  |  |  |
| 45         | 635.50                                        | 185.22                    | 3866628864       |  |  |  |  |
| 46         | 649.25                                        | 185.90                    | 4015797782       |  |  |  |  |
| 47         | 663.00                                        | 186.57                    | 4166386647       |  |  |  |  |
| 48         | 676.75                                        | 187.23                    | 4318294279       |  |  |  |  |
| 49         | 590.50                                        | 187.88                    | 44/1418557       |  |  |  |  |
| 50         | 704.25                                        | 193,11                    | 4/30101942       |  |  |  |  |
| 51<br>Reef | 745.67                                        | 284.23                    | /193998662       |  |  |  |  |
| KOOT       | 743.50                                        | 070.30                    | 10054050948      |  |  |  |  |
| Σm         | ult. = Σ[0.7P <sub>i</sub> h <sub>i</sub> *(  | 3H-h <sub>i</sub> )]/(6É) | 1.10825E+11      |  |  |  |  |
|            |                                               |                           |                  |  |  |  |  |
| I T        | <sub>otal</sub> (in <sup>4</sup> ) = Σmult./( | 0.7*H/450)                | 7078955283       |  |  |  |  |
|            |                                               |                           |                  |  |  |  |  |
|            | H/450 (in)                                    | 19.877                    |                  |  |  |  |  |

|                                   | Re                                       | eturns              |            |
|-----------------------------------|------------------------------------------|---------------------|------------|
|                                   | Equation                                 | inner               | outer      |
| L(in)                             |                                          | 120                 | 120        |
| t (in)                            |                                          | 18                  | 18         |
| A (In <sup>2</sup> )              | L*t                                      | 2160                | 2160       |
| l <sub>1</sub> (in <sup>4</sup> ) | L*t <sup>3</sup> /12                     | 58320               | 58320      |
| d (in)                            |                                          | 162                 | 390        |
| Ι <sub>ε</sub> (in <sup>4</sup> ) | l <sub>1</sub> +A*d <sup>2</sup>         | 56745360            | 328594320  |
| Ν                                 |                                          | 8                   | 12         |
| lr (in <sup>4</sup> )             | ΣΙε                                      | 453962880           | 3943131840 |
| Ir (total)                        |                                          | 4397094720          |            |
|                                   |                                          |                     |            |
|                                   | 65' walls                                |                     |            |
| l <sub>Req</sub>                  | l (tota)-lr                              | 268 <b>1</b> 860563 |            |
| L (in)                            |                                          | 780                 |            |
| Ν                                 |                                          | 4                   |            |
| t (in)                            | I <sub>Req</sub> *12/(L <sup>3</sup> *N) | 17.0                |            |

| Relative Stiffness About N/S Axis            |                      |                  |                  |             |  |  |  |  |  |  |
|----------------------------------------------|----------------------|------------------|------------------|-------------|--|--|--|--|--|--|
| Wa                                           | =                    | Interior Returns | Exterior Returns | 65' wall    |  |  |  |  |  |  |
| b (in)                                       |                      | 104              | 104              | 17          |  |  |  |  |  |  |
| h (in)                                       |                      | 18               | 18               | 780         |  |  |  |  |  |  |
| A (in <sup>2</sup> )                         | b*h                  | 1872             | 1872             | 13260       |  |  |  |  |  |  |
| l <sub>i</sub> (in <sup>4</sup> )            | bh³/12               | 50544            | 50544            | 672282000   |  |  |  |  |  |  |
| d (in)                                       |                      | 390              | 162              | 0           |  |  |  |  |  |  |
| N                                            |                      | 8                | 12               | 4           |  |  |  |  |  |  |
| I (in⁴)                                      | $\Sigma(I_i + Ad^2)$ | 2.2783.E+09      | 5.9015.E+08      | 2.6891.E+09 |  |  |  |  |  |  |
| ΣI (in <sup>4</sup> )                        |                      | 5.5575.E+09      |                  |             |  |  |  |  |  |  |
| RS for (1) 65' SW = I <sub>SW</sub> / ΣΙ (%) |                      |                  |                  |             |  |  |  |  |  |  |

| Shear Wall Desi                             | gn Check For Flexure | 2        |     |                 |           |          |     |    |
|---------------------------------------------|----------------------|----------|-----|-----------------|-----------|----------|-----|----|
| Variable                                    | Equation             | Value    |     |                 |           |          |     |    |
| Factored Total Moment<br>(Case 1 Wind)(TFM) | 1.6*3922512          | 6276020  |     |                 |           |          |     |    |
| Mu (ft-k)                                   | RS*TFM               | 759195.6 |     |                 |           |          |     |    |
| t (in)                                      |                      | 17       |     |                 |           |          |     |    |
| lw (in)                                     |                      | 780      |     |                 |           |          |     |    |
| d (in)                                      | 0.8*lw               | 624      |     |                 |           |          |     |    |
| f'c (psi)                                   |                      | 12000    |     |                 |           |          |     |    |
| β1                                          |                      | 0.65     |     |                 |           |          |     |    |
| fy (ksi)                                    |                      | 60       |     |                 |           |          |     |    |
| ф                                           |                      | 0.9      |     |                 |           |          |     |    |
| Assumed jd                                  | 0.9*d                | 561.6    |     |                 |           |          |     |    |
| As From assumed jd                          | Mu/(фfy*jd)          | 300.4098 | t   | ension length   | (in)      | 415.948  |     |    |
| а                                           | As*fy/(.85*f'c*t)    | 103.948  |     | Max # of Spac   | es        | 92 4329  | cav | 92 |
| jd (in)                                     | d-(a/2)              | 572.026  | (A  | ssume 4.5" Spa  | acing)    | 52.4525  | Say | 52 |
| As (in <sup>2</sup> )                       | Mu/(φfy*jd)          | 294.9344 | Aba | r Req'd w/ 3 Ba | ars (in²) | 1.068603 |     |    |
| Reasonable Reinf.                           |                      | Yes      |     |                 |           |          |     |    |
| As (used)                                   | (3) #10              | 350.52   |     |                 |           |          |     |    |
| а                                           | As*fy/(.85*f'c*t)    | 121.2872 |     |                 |           |          |     |    |
| с                                           | a/β <sub>1</sub>     | 186.5957 |     |                 |           |          |     |    |
| dt                                          | lw-3                 | 777      |     |                 |           |          |     |    |
| εt                                          | εu*(dt-c)/c          | 0.009492 | >   | 0.005           |           | OK       |     |    |

The New York Times Building New York, NY Technical Report #3

## Appendix F – Shear Wall Spot Checks

| Spot Check For Flex   | ure (SW 20 @ Base | Level)   | ]        |             |          |          |     |    |
|-----------------------|-------------------|----------|----------|-------------|----------|----------|-----|----|
| Variable              | Equation          | Value    | 1        |             |          |          |     |    |
| Mu (ft-k)             |                   | 375615.2 | ]        |             |          |          |     |    |
| t (in)                |                   | 16       |          |             |          |          |     |    |
| lw (in)               |                   | 780      |          |             |          |          |     |    |
| d (in)                | 0.8*lw            | 624      |          |             |          |          |     |    |
| f'c (psi)             |                   | 10000    |          |             |          |          |     |    |
| β1                    |                   | 0.65     |          |             |          |          |     |    |
| fy (ksi)              |                   | 60       |          |             |          |          |     |    |
| ф                     |                   | 0.9      |          |             |          |          |     |    |
| Assumed jd            | 0.9*d             | 561.6    |          |             |          |          |     |    |
| As From assumed jd    | Mu/(φfy*jd)       | 148.629  | tensio   | on length ( | in)      | 377.5716 |     |    |
| а                     | As*fy/(.85*f'c*t) | 65.57162 | Max      | # of Space  | s        | 02 0040  |     | 04 |
| jd (in)               | d-(a/2)           | 591.2142 | (Assum   | e 4.5" Spac | ing)     | 05.5040  | Say | 04 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)       | 141.1841 | Abar Req | 'd w/ 2 Bar | rs (in²) | 0.840382 |     |    |
| Reasonable Reinf.     |                   | Yes      |          |             |          |          |     |    |
| As (used)             | (2) #9            | 168      |          |             |          |          |     |    |
| а                     | As*fy/(.85*f'c*t) | 74.11765 |          |             |          |          |     |    |
| с                     | a/β <sub>1</sub>  | 114.0271 |          |             |          |          |     |    |
| dt                    | lw-3              | 777      |          |             |          |          |     |    |
| εt                    | εu*(dt-c)/c       | 0.017443 | >        | 0.005       |          |          | OK  |    |

| Spot Check For I      | Flexure (SW 1@ Bas | se Level)   |          |             |          |          |     |    |
|-----------------------|--------------------|-------------|----------|-------------|----------|----------|-----|----|
| Variable              | Equation           | Value       |          |             |          |          |     |    |
| Mu (ft-k)             |                    | 7084.22     |          |             |          |          |     |    |
| t (in)                |                    | 18          |          |             |          |          |     |    |
| lw (in)               |                    | 120         |          |             |          |          |     |    |
| d (in)                | 0.8*lw             | 96          |          |             |          |          |     |    |
| f'c (psi)             |                    | 10000       |          |             |          |          |     |    |
| β1                    |                    | 0.65        |          |             |          |          |     |    |
| fy (ksi)              |                    | 60          |          |             |          |          |     |    |
| ф                     |                    | 0.9         |          |             |          |          |     |    |
| Assumed jd            | 0.9*d              | 86.4        |          |             |          |          |     |    |
| As From assumed jd    | Mu/(φfy*jd)        | 18.22073045 | tensio   | on length ( | in)      | 55.14538 |     |    |
| а                     | As*fy/(.85*f'c*t)  | 7.145384491 | Max      | # of Space  | s        | 12 25/15 | cav | 12 |
| jd (in)               | d-(a/2)            | 92.42730775 | (Assum   | e 4.5" Spa  | cing)    | 12.2343  | Say | 12 |
| As (in <sup>2</sup> ) | Mu/(фfy*jd)        | 17.03253237 | Abar Req | 'd w/ 2 Bar | rs (in²) | 0.709689 |     |    |
| Reasonable Reinf.     |                    | Yes         |          |             |          |          |     |    |
| As (used)             | (2) #9             | 24          |          |             |          |          |     |    |
| а                     | As*fy/(.85*f'c*t)  | 9.411764706 |          |             |          |          |     |    |
| с                     | a/β1               | 14.47963801 |          |             |          |          |     |    |
| dt                    | lw-3               | 117         |          |             |          |          |     |    |
| εt                    | εu*(dt-c)/c        | 0.021240938 | >        | 0.005       |          |          | ОК  |    |

| Spot Check Fo         | or Flexure (SW 3 @ | Base Level) | 1        |             |          |          |     |
|-----------------------|--------------------|-------------|----------|-------------|----------|----------|-----|
| Variable              | Equation           | Value       | 1        |             |          |          |     |
| Mu (ft-k)             |                    | 43494.24    | 1        |             |          |          |     |
| t (in)                |                    | 18          | 1        |             |          |          |     |
| lw (in)               |                    | 240         | 1        |             |          |          |     |
| d (in)                | 0.8*lw             | 192         | 1        |             |          |          |     |
| f'c (psi)             |                    | 10000       | 1        |             |          |          |     |
| β1                    |                    | 0.65        | ]        |             |          |          |     |
| fy (ksi)              |                    | 60          | 1        |             |          |          |     |
| φ                     |                    | 0.9         | 1        |             |          |          |     |
| Assumed jd            | 0.9*d              | 172.8       | 1        |             |          |          |     |
| As From assumed jd    | Mu/(φfy*jd)        | 55.93395062 | tensi    | on length ( | in)      | 117.9349 |     |
| а                     | As*fy/(.85*f'c*t)  | 21.9348826  | Max      | # of Space  | 25       | 26.2070  |     |
| jd (in)               | d-(a/2)            | 181.0325587 | (Assum   | ne 4.5" Spa | cing)    | 20.2078  | Say |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)        | 53.39032236 | Abar Rec | q'd w/ 2 Ba | rs (in²) | 1.026737 |     |
| Reasonable Reinf.     |                    | Yes         |          |             |          |          |     |
| As (used)             | (2) #10            | 66.04       |          |             |          |          |     |
| а                     | As*fy/(.85*f'c*t)  | 25.89803922 | ]        |             |          |          |     |
| с                     | a/β <sub>1</sub>   | 39.84313725 |          |             |          |          |     |
| dt                    | lw-3               | 237         | 1        |             |          |          |     |
| εt                    | εu*(dt-c)/c        | 0.01484498  | >        | 0.005       |          |          | ОК  |

| Spot Check F          | or Flexure (SW 2 @ | Level 30)   |          |             |          |          |      |    |
|-----------------------|--------------------|-------------|----------|-------------|----------|----------|------|----|
| Variable              | Equation           | Value       |          |             |          |          |      |    |
| Mu (ft-k)             |                    | 9449.69     |          |             |          |          |      |    |
| t (in)                |                    | 18          |          |             |          |          |      |    |
| lw (in)               |                    | 240         |          |             |          |          |      |    |
| d (in)                | 0.8*lw             | 192         |          |             |          |          |      |    |
| f'c (psi)             |                    | 8000        |          |             |          |          |      |    |
| β1                    |                    | 0.65        |          |             |          |          |      |    |
| fy (ksi)              |                    | 60          |          |             |          |          |      |    |
| ф                     |                    | 0.9         |          |             |          |          |      |    |
| Assumed jd            | 0.9*d              | 172.8       |          |             |          |          |      |    |
| As From assumed jd    | Mu/(фfy*jd)        | 12.15237912 | tensi    | on length ( | in)      | 101.957  |      |    |
| а                     | As*fy/(.85*f'c*t)  | 5.957048586 | Max      | # of Space  | 25       | 22 65 71 | 5014 | 22 |
| jd (in)               | d-(a/2)            | 189.0214757 | (Assum   | ne 4.5" Spa | cing)    | 22.0371  | say  | 25 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)        | 11.10948427 | Abar Rec | q'd w/ 2 Ba | rs (in²) | 0.241511 |      |    |
| Reasonable Reinf.     |                    | Yes         |          |             |          |          |      |    |
| As (used)             | (2) #5             | 16.1        |          |             |          |          |      |    |
| а                     | As*fy/(.85*f'c*t)  | 7.892156863 |          |             |          |          |      |    |
| с                     | a/β1               | 12.14177979 |          |             |          |          |      |    |
| dt                    | lw-3               | 237         |          |             |          |          |      |    |
| εt                    | εu*(dt-c)/c        | 0.055558137 | >        | 0.005       |          |          | OK   |    |

| Spot Check For Fle    | exure (SW 17 @ Lev | el 40)   |          |              |         |          |      |    |
|-----------------------|--------------------|----------|----------|--------------|---------|----------|------|----|
| Variable              | Equation           | Value    |          |              |         |          |      |    |
| Mu (ft-k)             |                    | 12007.88 |          |              |         |          |      |    |
| t (in)                |                    | 14       |          |              |         |          |      |    |
| lw (in)               |                    | 780      |          |              |         |          |      |    |
| d (in)                | 0.8*lw             | 624      |          |              |         |          |      |    |
| f'c (psi)             |                    | 6000     |          |              |         |          |      |    |
| β1                    |                    | 0.7      |          |              |         |          |      |    |
| fy (ksi)              |                    | 60       |          |              |         |          |      |    |
| ф                     |                    | 0.9      |          |              |         |          |      |    |
| Assumed jd            | 0.9*d              | 561.6    |          |              |         |          |      |    |
| As From assumed jd    | Mu/(¢fy*jd)        | 4.751456 | tensio   | on length (i | in)     | 315.9928 |      |    |
| а                     | As*fy/(.85*f'c*t)  | 3.99282  | Max      | # of Space   | s       | 70 2206  | 5 OV | 70 |
| jd (in)               | d-(a/2)            | 622.0036 | (Assum   | e 4.5" Spac  | ing)    | 70.2200  | say  | 70 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)        | 4.290036 | Abar Req | 'd w/ 2 Bar  | s (in²) | 0.030643 |      |    |
| Reasonable Reinf.     |                    | Yes      |          |              |         |          |      |    |
| As (used)             | (2) #5             | 49       |          |              |         |          |      |    |
| а                     | As*fy/(.85*f'c*t)  | 41.17647 |          |              |         |          |      |    |
| с                     | a/β <sub>1</sub>   | 58.82353 |          |              |         |          |      |    |
| dt                    | lw-3               | 777      |          |              |         |          |      |    |
| εt                    | su*(dt-c)/c        | 0.036627 | >        | 0.005        |         |          | OK   |    |

| Spot check For        | Flexule (SW II @ L | ever40j     |          |             |         |          |      |    |
|-----------------------|--------------------|-------------|----------|-------------|---------|----------|------|----|
| Variable              | Equation           | Value       |          |             |         |          |      |    |
| Mu (ft-k)             |                    | 637.03      |          |             |         |          |      |    |
| t (in)                |                    | 18          |          |             |         |          |      |    |
| lw (in)               |                    | 120         |          |             |         |          |      |    |
| d (in)                | 0.8*lw             | 96          |          |             |         |          |      |    |
| f'c (psi)             |                    | 6000        |          |             |         |          |      |    |
| β1                    |                    | 0.7         |          |             |         |          |      |    |
| fy (ksi)              |                    | 60          |          |             |         |          |      |    |
| ф                     |                    | 0.9         |          |             |         |          |      |    |
| Assumed jd            | 0.9*d              | 86.4        |          |             |         |          |      |    |
| As From assumed jd    | Mu/(фfy*jd)        | 1.638451646 | tensi    | on length ( | in)     | 49.07088 |      |    |
| а                     | As*fy/(.85*f'c*t)  | 1.070883429 | Max      | # of Space  | S       | 10 9046  | 6014 | 11 |
| jd (in)               | d-(a/2)            | 95.46455829 | (Assum   | e 4.5" Spac | cing)   | 10.3040  | say  | 11 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)        | 1.482877256 | Abar Req | 'd w/ 2 Bar | s (in²) | 0.067404 |      |    |
| Reasonable Reinf.     |                    | Yes         |          |             |         |          |      |    |
| As (used)             | (2) #5             | 7.7         |          |             |         |          |      |    |
| a                     | As*fy/(.85*f'c*t)  | 5.032679739 |          |             |         |          |      |    |
| с                     | a/β <sub>1</sub>   | 7.189542484 |          |             |         |          |      |    |
| dt                    | lw-3               | 117         |          |             |         |          |      |    |
| εt                    | εu*(dt-c)/c        | 0.045820909 | >        | 0.005       |         |          | OK   |    |

| Spot Check I          | For Flexure (SW 3 @ | Level 40)   |          |             |          |          |     |    |
|-----------------------|---------------------|-------------|----------|-------------|----------|----------|-----|----|
| Variable              | Equation            | Value       |          |             |          |          |     |    |
| Mu (ft-k)             |                     | 2393.83     |          |             |          |          |     |    |
| t (in)                |                     | 18          | 1        |             |          |          |     |    |
| lw (in)               |                     | 240         |          |             |          |          |     |    |
| d (in)                | 0.8*lw              | 192         |          |             |          |          |     |    |
| f'c (psi)             |                     | 6000        |          |             |          |          |     |    |
| β1                    |                     | 0.7         |          |             |          |          |     |    |
| fy (ksi)              |                     | 60          | 1        |             |          |          |     |    |
| ф                     |                     | 0.9         |          |             |          |          |     |    |
| Assumed jd            | 0.9*d               | 172.8       |          |             |          |          |     |    |
| As From assumed jd    | Mu/(фfy*jd)         | 3.078485082 | tensi    | on length ( | in)      | 98.01208 |     |    |
| а                     | As*fy/(.85*f'c*t)   | 2.012081753 | Max      | # of Space  | 25       | 21 7905  |     | 22 |
| jd (in)               | d-(a/2)             | 190.9939591 | (Assum   | ne 4.5" Spa | cing)    | 21.7605  | say | 22 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)         | 2.785230615 | Abar Rec | q'd w/ 2 Ba | rs (in²) | 0.063301 |     |    |
| Reasonable Reinf.     |                     | Yes         |          |             |          |          |     |    |
| As (used)             | (2) #5              | 15.4        | 1        |             |          |          |     |    |
| а                     | As*fy/(.85*f'c*t)   | 10.06535948 |          |             |          |          |     |    |
| с                     | a/β1                | 14.37908497 | 1        |             |          |          |     |    |
| dt                    | lw-3                | 237         | 1        |             |          |          |     |    |
| εt                    | εu*(dt-c)/c         | 0.046446818 | >        | 0.005       |          |          | ОК  |    |

| Spot Check For Fle    | exure (SW 17 @ Lev | el 50)   |          |             |          |          |     |    |
|-----------------------|--------------------|----------|----------|-------------|----------|----------|-----|----|
| Variable              | Equation           | Value    |          |             |          |          |     |    |
| Mu (ft-k)             |                    | 65036.4  |          |             |          |          |     |    |
| t (in)                |                    | 14       |          |             |          |          |     |    |
| lw (in)               |                    | 780      |          |             |          |          |     |    |
| d (in)                | 0.8*lw             | 624      |          |             |          |          |     |    |
| f'c (psi)             |                    | 8000     |          |             |          |          |     |    |
| β1                    |                    | 0.65     |          |             |          |          |     |    |
| fy (ksi)              |                    | 60       |          |             |          |          |     |    |
| ф                     |                    | 0.9      |          |             |          |          |     |    |
| Assumed jd            | 0.9*d              | 561.6    |          |             |          |          |     |    |
| As From assumed jd    | Mu/(¢fy*jd)        | 25.73457 | tensio   | on length ( | in)      | 328.2193 |     |    |
| а                     | As*fy/(.85*f'c*t)  | 16.21927 | Max      | # of Space  | s        | 72 9276  | COV | 72 |
| jd (in)               | d-(a/2)            | 615.8904 | (Assum   | e 4.5" Spac | ing)     | 12.3370  | say | 75 |
| As (in <sup>2</sup> ) | Mu/(фfy*jd)        | 23.46608 | Abar Req | 'd w/ 2 Bar | rs (in²) | 0.160727 |     |    |
| Reasonable Reinf.     |                    | Yes      |          |             |          |          |     |    |
| As (used)             | (2) #5             | 51.1     |          |             |          |          |     |    |
| а                     | As*fy/(.85*f'c*t)  | 32.20588 |          |             |          |          |     |    |
| с                     | a/β <sub>1</sub>   | 49.54751 |          |             |          |          |     |    |
| dt                    | lw-3               | 777      |          |             |          |          |     |    |
| εt                    | su*(dt-c)/c        | 0.044046 | >        | 0.005       |          |          | ОК  |    |

| Spot Check For        | Flexure (SW 10 @ L | evel 51)    |          |             |         |          |      |    |
|-----------------------|--------------------|-------------|----------|-------------|---------|----------|------|----|
| Variable              | Equation           | Value       |          |             |         |          |      |    |
| Mu (ft-k)             |                    | 1725.32     |          |             |         |          |      |    |
| t (in)                |                    | 18          |          |             |         |          |      |    |
| lw (in)               |                    | 120         |          |             |         |          |      |    |
| d (in)                | 0.8*lw             | 96          |          |             |         |          |      |    |
| f'c (psi)             |                    | 8000        |          |             |         |          |      |    |
| β1                    |                    | 0.65        |          |             |         |          |      |    |
| fy (ksi)              |                    | 60          |          |             |         |          |      |    |
| φ                     |                    | 0.9         |          |             |         |          |      |    |
| Assumed jd            | 0.9*d              | 86.4        |          |             |         |          |      |    |
| As From assumed jd    | Mu/(фfy*jd)        | 4.43755144  | tensio   | on length ( | in)     | 50.17527 |      |    |
| а                     | As*fy/(.85*f'c*t)  | 2.175270314 | Max      | # of Space  | S       | 11 1501  | 5014 | 11 |
| jd (in)               | d-(a/2)            | 94.91236484 | (Assum   | e 4.5" Spac | ing)    | 11.1501  | say  | 11 |
| As (in <sup>2</sup> ) | Mu/(φfy*jd)        | 4.039562654 | Abar Req | 'd w/ 2 Bar | s (in²) | 0.183616 |      |    |
| Reasonable Reinf.     |                    | Yes         |          |             |         |          |      |    |
| As (used)             | (2) #9             | 22          |          |             |         |          |      |    |
| а                     | As*fy/(.85*f'c*t)  | 10.78431373 |          |             |         |          |      |    |
| с                     | a/β1               | 16.59125189 |          |             |         |          |      |    |
| dt                    | lw-3               | 117         |          |             |         |          |      |    |
| εt                    | εu*(dt-c)/c        | 0.018155727 | >        | 0.005       |         |          | ок   |    |

| Spot Check For Shear (SW 19 @ Level 28) |                       |       |    |  |  |  |  |  |  |  |  |
|-----------------------------------------|-----------------------|-------|----|--|--|--|--|--|--|--|--|
| Variable                                | Equation              | Value |    |  |  |  |  |  |  |  |  |
| Vu (k)                                  |                       | 7597  |    |  |  |  |  |  |  |  |  |
| t (in)                                  |                       | 16    |    |  |  |  |  |  |  |  |  |
| lw (in)                                 |                       | 780   |    |  |  |  |  |  |  |  |  |
| hw (in)                                 |                       | 175   |    |  |  |  |  |  |  |  |  |
| d                                       | 0.8*lw                | 624   |    |  |  |  |  |  |  |  |  |
| f'c (psi)                               |                       | 10000 |    |  |  |  |  |  |  |  |  |
| fy (ksi)                                |                       | 60    |    |  |  |  |  |  |  |  |  |
| phi                                     |                       | 0.75  |    |  |  |  |  |  |  |  |  |
| Max phi Vn                              | phi*10*(f'c)^0.5 *t*d | 7488  | NG |  |  |  |  |  |  |  |  |

|              | Spot Check For Shear (SW 7           | @ Base Le | vel) |        |    |
|--------------|--------------------------------------|-----------|------|--------|----|
| Variable     | Equation                             | Value     |      |        |    |
| Vu (k)       |                                      | 502.12    |      |        |    |
| t (in)       |                                      | 18        |      |        |    |
| lw (in)      |                                      | 120       |      |        |    |
| hw (in)      |                                      | 308       |      |        |    |
| d            | 0.8*lw                               | 96        |      |        |    |
| f'c (psi)    |                                      | 10000     |      |        |    |
| fy (ksi)     |                                      | 60        |      |        |    |
| phi          |                                      | 0.75      |      |        |    |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                | 1296      | ОК   |        |    |
| Vc (k)       | 3.3*(f'c)^0.5 *t*d                   | 570.24    |      |        |    |
| Phi Vc (k)   |                                      | 427.68    |      |        |    |
| Provision    | Design w/ 11.10.9                    |           |      |        |    |
| Req'd Vs     | (Vu/phi)-Vc                          | 99.25333  |      |        |    |
| Req'd Av/s   | Vs/(fy*d)                            | 0.017231  |      |        |    |
| s for (2) #5 |                                      | 35.98066  | Use  | 10     |    |
| rhot         | Av/(s*t)                             | 0.003444  | >    | 0.0025 | OK |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025) | 0.002469  |      |        |    |
| s for (2) #5 |                                      | 9.785563  |      |        |    |

|              | Spot Check For Shear (SW 2 @ Base Level) |          |     |        |    |  |  |  |  |  |  |  |
|--------------|------------------------------------------|----------|-----|--------|----|--|--|--|--|--|--|--|
| Variable     | Equation                                 | Value    |     |        |    |  |  |  |  |  |  |  |
| Vu (k)       |                                          | 1363.58  |     |        |    |  |  |  |  |  |  |  |
| t (in)       |                                          | 18       |     |        |    |  |  |  |  |  |  |  |
| lw (in)      |                                          | 240      |     |        |    |  |  |  |  |  |  |  |
| hw (in)      |                                          | 308      |     |        |    |  |  |  |  |  |  |  |
| d            | 0.8*lw                                   | 192      |     |        |    |  |  |  |  |  |  |  |
| f'c (psi)    |                                          | 10000    |     |        |    |  |  |  |  |  |  |  |
| fy (ksi)     |                                          | 60       |     |        |    |  |  |  |  |  |  |  |
| phi          |                                          | 0.75     |     |        |    |  |  |  |  |  |  |  |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                    | 2592     | ОК  |        |    |  |  |  |  |  |  |  |
| Vc(k)        | 3.3*(f'c)^0.5 *t*d                       | 1140.48  |     |        |    |  |  |  |  |  |  |  |
| Phi Vc (k)   |                                          | 855.36   |     |        |    |  |  |  |  |  |  |  |
| Provision    | Design w/ 11.10.9                        |          |     |        |    |  |  |  |  |  |  |  |
| Req'd Vs     | (Vu/phi)-Vc                              | 677.6267 |     |        |    |  |  |  |  |  |  |  |
| Req'd Av/s   | Vs/(fy*d)                                | 0.058822 |     |        |    |  |  |  |  |  |  |  |
| s for (2) #5 |                                          | 10.54032 | Use | 10     |    |  |  |  |  |  |  |  |
| rhot         | Av/(s*t)                                 | 0.003444 | >   | 0.0025 | OK |  |  |  |  |  |  |  |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025)     | 0.003075 |     |        |    |  |  |  |  |  |  |  |
| s for (2) #5 |                                          | 7.856742 |     |        |    |  |  |  |  |  |  |  |

|              | Spot Check For Shear (SW 7 @ Level 30) |          |     |        |    |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------|----------|-----|--------|----|--|--|--|--|--|--|--|--|
| Variable     | Equation                               | Value    |     |        |    |  |  |  |  |  |  |  |  |
| Vu (k)       |                                        | 245.58   |     |        |    |  |  |  |  |  |  |  |  |
| t (in)       |                                        | 18       |     |        |    |  |  |  |  |  |  |  |  |
| lw (in)      |                                        | 120      |     |        |    |  |  |  |  |  |  |  |  |
| hw (in)      |                                        | 165      |     |        |    |  |  |  |  |  |  |  |  |
| d            | 0.8*lw                                 | 96       |     |        |    |  |  |  |  |  |  |  |  |
| f'c (psi)    |                                        | 8000     |     |        |    |  |  |  |  |  |  |  |  |
| fy (ksi)     |                                        | 60       |     |        |    |  |  |  |  |  |  |  |  |
| phi          |                                        | 0.75     |     |        |    |  |  |  |  |  |  |  |  |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                  | 1159.178 | ОК  |        |    |  |  |  |  |  |  |  |  |
| Vc (k)       | 3.3*(f'c)^0.5 *t*d                     | 510.0382 |     |        |    |  |  |  |  |  |  |  |  |
| Phi Vc (k)   |                                        | 382.5286 |     |        |    |  |  |  |  |  |  |  |  |
| Provision    | Design w/ 11.10.9                      |          |     |        |    |  |  |  |  |  |  |  |  |
| Req'd Vs     | (Vu/phi)-Vc                            |          |     |        |    |  |  |  |  |  |  |  |  |
| Req'd Av/s   | Vs/(fy*d)                              |          |     |        |    |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                        |          | Use | 10     |    |  |  |  |  |  |  |  |  |
| rhot         | Av/(s*t)                               | 0.003444 | >   | 0.0025 | OK |  |  |  |  |  |  |  |  |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025)   | 0.003031 |     |        |    |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                        | 14.87535 |     |        |    |  |  |  |  |  |  |  |  |

|              | Spot Check For Shear (SW             | 3 @ Level 3 | 30) |        |    |
|--------------|--------------------------------------|-------------|-----|--------|----|
| Variable     | Equation                             | Value       |     |        |    |
| Vu (k)       |                                      | 783.2       |     |        |    |
| t (in)       |                                      | 18          |     |        |    |
| lw (in)      |                                      | 240         |     |        |    |
| hw (in)      |                                      | 165         |     |        |    |
| d            | 0.8*lw                               | 192         |     |        |    |
| f'c (psi)    |                                      | 8000        |     |        |    |
| fy (ksi)     |                                      | 60          |     |        |    |
| phi          |                                      | 0.75        |     |        |    |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                | 2318.355    | ОК  |        |    |
| Vc(k)        | 3.3*(f'c)^0.5 *t*d                   | 1020.076    |     |        |    |
| Phi Vc (k)   |                                      | 765.0572    |     |        |    |
| Provision    | Design w/ 11.10.9                    |             |     |        |    |
| Req'd Vs     | (Vu/phi)-Vc                          | 24.19034    |     |        |    |
| Req'd Av/s   | Vs/(fy*d)                            | 0.0021      |     |        |    |
| s for (2) #5 |                                      | 295.2583    | Use | 10     |    |
| rhot         | Av/(s*t)                             | 0.003444    | >   | 0.0025 | OK |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025) | 0.003356    |     |        |    |
| s for (2) #5 |                                      | 13.4363     |     |        |    |

|              | Spot Check For Shear (SW 19 @ Level 40) |          |     |        |    |  |  |  |  |  |  |  |
|--------------|-----------------------------------------|----------|-----|--------|----|--|--|--|--|--|--|--|
| Variable     | Equation                                | Value    |     |        |    |  |  |  |  |  |  |  |
| Vu (k)       |                                         | 1285     |     |        |    |  |  |  |  |  |  |  |
| t (in)       |                                         | 16       |     |        |    |  |  |  |  |  |  |  |
| lw (in)      |                                         | 780      |     |        |    |  |  |  |  |  |  |  |
| hw (in)      |                                         | 165      |     |        |    |  |  |  |  |  |  |  |
| d            | 0.8*lw                                  | 624      |     |        |    |  |  |  |  |  |  |  |
| f'c (psi)    |                                         | 6000     |     |        |    |  |  |  |  |  |  |  |
| fy (ksi)     |                                         | 60       |     |        |    |  |  |  |  |  |  |  |
| phi          |                                         | 0.75     |     |        |    |  |  |  |  |  |  |  |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                   | 5800.18  | ОК  |        |    |  |  |  |  |  |  |  |
| Vc(k)        | 3.3*(f'c)^0.5 *t*d                      | 2552.079 |     |        |    |  |  |  |  |  |  |  |
| Phi Vc (k)   |                                         | 1914.059 |     |        |    |  |  |  |  |  |  |  |
| Provision    | Design w/ 11.10.9                       |          |     |        |    |  |  |  |  |  |  |  |
| Req'd Vs     | (Vu/phi)-Vc                             |          |     |        |    |  |  |  |  |  |  |  |
| Req'd Av/s   | Vs/(fy*d)                               |          |     |        |    |  |  |  |  |  |  |  |
| s for (2) #5 |                                         |          | Use | 10     |    |  |  |  |  |  |  |  |
| rhot         | Av/(s*t)                                | 0.003875 | >   | 0.0025 | ОК |  |  |  |  |  |  |  |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025)    | 0.004073 |     |        |    |  |  |  |  |  |  |  |
| s for (2) #5 |                                         | 11.06982 |     |        |    |  |  |  |  |  |  |  |

| Spot Check For Shear (SW 10 @ Level 40) |                           |          |    |  |  |  |  |  |  |  |  |
|-----------------------------------------|---------------------------|----------|----|--|--|--|--|--|--|--|--|
| Variable                                | Equation                  | Value    |    |  |  |  |  |  |  |  |  |
| Vu (k)                                  |                           | 158.67   |    |  |  |  |  |  |  |  |  |
| t (in)                                  |                           | 18       |    |  |  |  |  |  |  |  |  |
| lw (in)                                 |                           | 120      |    |  |  |  |  |  |  |  |  |
| hw (in)                                 |                           | 165      |    |  |  |  |  |  |  |  |  |
| d                                       | 0.8*lw                    | 96       |    |  |  |  |  |  |  |  |  |
| f'c (psi)                               |                           | 6000     |    |  |  |  |  |  |  |  |  |
| fy (ksi)                                |                           | 60       |    |  |  |  |  |  |  |  |  |
| phi                                     |                           | 0.75     |    |  |  |  |  |  |  |  |  |
| Max phi Vn                              | phi*10*(f'c)^0.5 *t*d     | 1003.877 | OK |  |  |  |  |  |  |  |  |
| Vc (k)                                  | 3.3*(f'c)^0.5 *t*d        | 441.706  |    |  |  |  |  |  |  |  |  |
| Phi Vc (k)                              |                           | 331.2795 |    |  |  |  |  |  |  |  |  |
| Provision                               | Design w/ min shear rein. |          |    |  |  |  |  |  |  |  |  |

|              | Spot Check For Shear (SW 2 @ Level 40) |          |     |        |    |  |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------|----------|-----|--------|----|--|--|--|--|--|--|--|--|--|
| Variable     | Equation                               | Value    |     |        |    |  |  |  |  |  |  |  |  |  |
| Vu (k)       |                                        | 513.26   |     |        |    |  |  |  |  |  |  |  |  |  |
| t (in)       |                                        | 18       |     |        |    |  |  |  |  |  |  |  |  |  |
| lw (in)      |                                        | 240      |     |        |    |  |  |  |  |  |  |  |  |  |
| hw (in)      |                                        | 165      |     |        |    |  |  |  |  |  |  |  |  |  |
| d            | 0.8*lw                                 | 192      |     |        |    |  |  |  |  |  |  |  |  |  |
| f'c (psi)    |                                        | 6000     |     |        |    |  |  |  |  |  |  |  |  |  |
| fy (ksi)     |                                        | 60       |     |        |    |  |  |  |  |  |  |  |  |  |
| phi          |                                        | 0.75     |     |        |    |  |  |  |  |  |  |  |  |  |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                  | 2007.755 | ОК  |        |    |  |  |  |  |  |  |  |  |  |
| Vc (k)       | 3.3*(f'c)^0.5 *t*d                     | 883.412  |     |        |    |  |  |  |  |  |  |  |  |  |
| Phi Vc (k)   |                                        | 662.559  |     |        |    |  |  |  |  |  |  |  |  |  |
| Provision    | Design w/ 11.10.9                      |          |     |        |    |  |  |  |  |  |  |  |  |  |
| Req'd Vs     | (Vu/phi)-Vc                            |          |     |        |    |  |  |  |  |  |  |  |  |  |
| Req'd Av/s   | Vs/(fy*d)                              |          |     |        |    |  |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                        |          | Use | 10     |    |  |  |  |  |  |  |  |  |  |
| rhot         | Av/(s*t)                               | 0.003444 | >   | 0.0025 | ОК |  |  |  |  |  |  |  |  |  |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025)   | 0.003356 |     |        |    |  |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                        | 13.4363  |     |        |    |  |  |  |  |  |  |  |  |  |

|              | Spot Check For Shear (SW 19 @ Level 51) |          |     |        |    |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------------|----------|-----|--------|----|--|--|--|--|--|--|--|--|
| Variable     | Equation                                | Value    |     |        |    |  |  |  |  |  |  |  |  |
| Vu (k)       |                                         | 4163.32  |     |        |    |  |  |  |  |  |  |  |  |
| t (in)       |                                         | 14       |     |        |    |  |  |  |  |  |  |  |  |
| lw (in)      |                                         | 780      |     |        |    |  |  |  |  |  |  |  |  |
| hw (in)      |                                         | 192      |     |        |    |  |  |  |  |  |  |  |  |
| d            | 0.8*lw                                  | 624      |     |        |    |  |  |  |  |  |  |  |  |
| f'c (psi)    |                                         | 8000     |     |        |    |  |  |  |  |  |  |  |  |
| fy (ksi)     |                                         | 60       |     |        |    |  |  |  |  |  |  |  |  |
| phi          |                                         | 0.75     |     |        |    |  |  |  |  |  |  |  |  |
| Max phi Vn   | phi*10*(f'c)^0.5 *t*d                   | 5860.287 | ОК  |        |    |  |  |  |  |  |  |  |  |
| Vc (k)       | 3.3*(f'c)^0.5 *t*d                      | 2578.526 |     |        |    |  |  |  |  |  |  |  |  |
| Phi Vc (k)   |                                         | 1933.895 |     |        |    |  |  |  |  |  |  |  |  |
| Provision    | Design w/ 11.10.9                       |          |     |        |    |  |  |  |  |  |  |  |  |
| Req'd Vs     | (Vu/phi)-Vc                             | 2972.567 |     |        |    |  |  |  |  |  |  |  |  |
| Req'd Av/s   | Vs/(fy*d)                               | 0.079395 |     |        |    |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                         | 7.809008 | Use | 10     |    |  |  |  |  |  |  |  |  |
| rhot         | Av/(s*t)                                | 0.004429 | v   | 0.0025 | OK |  |  |  |  |  |  |  |  |
| rhol         | 0.0025+0.5*(2.5-(h/l))*(rhot-0.0025)    | 0.004673 |     |        |    |  |  |  |  |  |  |  |  |
| s for (2) #5 |                                         | 8.291694 |     |        |    |  |  |  |  |  |  |  |  |

## Appendix G – ETABS Output for Case 2 Wind

|                |             |           |               |           |               |                   | Shear Wa      | ll Results F | rom ETABS for Ca  | se 2 Wind |               |           |               |           |               |           |               |
|----------------|-------------|-----------|---------------|-----------|---------------|-------------------|---------------|--------------|-------------------|-----------|---------------|-----------|---------------|-----------|---------------|-----------|---------------|
|                |             |           | Bas           | e         |               |                   | Leve          | 115          |                   |           | Leve          | l 28      |               | Level 29  |               |           |               |
| Wind Direction | Shear Wall  | e         | =+0.15B       | e         | e=-0.15B      | e                 | =+0.15B       | e            | =-0.15B           | e=        | :+0.15B       | e         | =-0.15B       | e=        | :+0.15B       | e         | =-0.15B       |
|                |             | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k)         | Moment (k-ft) | Shear (k)    | Moment (k-ft)     | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|                | 1           | 55.91     | 816.07        | -292.54   | -1373.973     | 184.95            | 1102.244      | -327.51      | -1367.379         | 305.78    | 3190.06       | 293.75    | 3232.694      | 346.87    | 3964.782      | 27.26     | 2780.876      |
|                | 2           | 171.3     | 4736.925      | -207.63   | -5350.702     | 486.12            | 3261.843      | -497.53      | -3341.48          | 113.4     | 1283.648      | -89.57    | -958.686      | 424.11    | 3392.44       | -374.46   | -3067.234     |
|                | 3           | 207.63    | 5350.733      | -171.3    | -4736.895     | 497.54            | 3341.523      | -486.12      | -3261.802         | 89.43     | 959.009       | -113.54   | -1283.318     | 374.97    | 3072.335      | -423.6    | -3387.333     |
|                | 4           | 292.54    | 1373.978      | -55.91    | -816.065      | 327.51            | 1367.39       | -184.95      | -1102.232         | -293.82   | -3232.768     | -305.84   | -3190.112     | -26.98    | -2779.762     | -346.62   | -3963.651     |
|                | 5           | 21.94     | 288.702       | -97.04    | -585.726      | 75.19             | 429.25        | -134.33      | -571.149          | 77.19     | 327.182       | 51.48     | -34.872       | 127.22    | 539.776       | -12.62    | -304.616      |
|                | 6           | 51.88     | 401.996       | -1.58     | -2/1.291      | 120.58            | 532.188       | -/1.32       | -437.635          | 11.78     | 204.959       | -39.54    | -210.941      | 62.79     | 460.435       | -97.97    | -422.388      |
|                | /<br>0      | 1.58      | 2/1.295       | -31.88    | -401.993      | 124.22            | 437.042       | -120.38      | -532.181          | 51.51     | 210.902       | -11.82    | -204.992      | 98.12     | 423.133       | -02.04    | -459.079      |
|                | 9           | -21.94    | -288.7        | 97.04     | 585 728       | -75.19            | -429 247      | 134.33       | 571 154           | -77 21    | -326 937      | -77.25    | 35 217        | -127.04   | -538 848      | 12 87     | 305 927       |
|                | 10          | -51.88    | -401,993      | 1.58      | 271,295       | -120.58           | -532,184      | 71.32        | 437.641           | -11.81    | -204,973      | 39.51     | 210.921       | -62.71    | -460.047      | 98.08     | 422,935       |
|                | 11          | -1.58     | -271.292      | 51.88     | 401.996       | -71.32            | -437.64       | 120.58       | 532.184           | -39.53    | -210.907      | 11.79     | 204.985       | -98.03    | -422.695      | 62.77     | 460.298       |
|                | 12          | -97.04    | -585.726      | 21.94     | 288.703       | -134.33           | -571.153      | 75.19        | 429.247           | 51.49     | -34.87        | 77.19     | 327.186       | -12.71    | -305.045      | 127.17    | 539.553       |
|                | 13          | -55.91    | -816.067      | 292.54    | 1373.977      | -184.95           | -1102.239     | 327.51       | 1367.386          | -305.82   | -3188.462     | -293.81   | -3230.437     | -347.84   | -4000.028     | -28.63    | -2830.657     |
|                | 14          | -171.3    | -4736.905     | 207.63    | 5350.731      | -486.12           | -3261.832     | 497.53       | 3341.497          | -113.46   | -1283.459     | 89.49     | 958.953       | -423.9    | -3390.108     | 374.74    | 3070.527      |
|                | 15          | -207.63   | -5350.71      | 171.3     | 4736.928      | -497.54           | -3341.514     | 486.12       | 3261.814          | -89.49    | -958.7        | 113.45    | 1283.754      | -374.75   | -3070.255     | 423.9     | 3390.27       |
|                | 16          | -292.54   | -1373.974     | 55.91     | 816.07        | -327.51           | -1367.389     | 184.95       | 1102.235          | 293.8     | 3232.756      | 305.81    | 3190.095      | 27.06     | 2780.19       | 346.73    | 3964.256      |
|                | 17          | 80.53     | 184359.514    | 5386.09   | 399391.859    | 194.85            | 85580.136     | 3518.49      | 88106.072         | -1708.09  | 12993.234     | -1509     | -9498.202     | 2146.7    | 97043.425     | 4225.57   | 98712.594     |
|                | 18          | 2130.32   | 245328.112    | 3692.64   | 320208.047    | 2540.68           | 88430.479     | 2725.98      | 88336.307         | -5400.46  | -14732.445    | -6493.42  | -29513.849    | -118.35   | 33849.68      | -492.49   | 30318.447     |
|                | 19          | 3692.64   | 320208.676    | 2130.32   | 245327.588    | 2725.97           | 88337.086     | 2540.68      | 88430.097         | -6493.62  | -29509.07     | -5400.49  | -14/30.535    | -491.56   | 30326.852     | -118.07   | 33853.104     |
| ŀ              | 20          | 3560.05   | 555552.362    | 00.35     | 164535.076    | 5316.45           | 00107.145     | 154.65       | 83380.004         | -1311.04  | -5454.507     | -1703.31  | 15059.044     | 4225.22   | 50075.105     | 2145.05   | 57135.637     |
| F/W            | Shear Wall  | e         | =+0.15B       | - 50      | =-0.15B       | e=+0.15B e=-0.15B |               |              | e=+0.15B e=-0.15B |           |               | =-0.15B   | e=            | :+0.15B   | - J1          | =-0.15B   |               |
| 2,             | oncar train | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k)         | Moment (k-ft) | Shear (k)    | Moment (k-ft)     | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|                | 1           | 54.28     | 395.5         | -296.91   | -1331.427     | 83.96             | 502.259       | -146.47      | -621.362          | 123.73    | 620.666       | -19.96    | -212.627      | 243.13    | 2305.703      | 144.32    | 1456.162      |
|                | 2           | 348.72    | 2522.161      | -314.49   | -2199.952     | 231.73            | 1434.89       | -236.04      | -1465.918         | 188.33    | 1263.132      | -149.51   | -996.597      | 137.85    | 1608.302      | -105.72   | -1232.37      |
|                | 3           | 314.51    | 2199.207      | -348.69   | -2522.9       | 236.05            | 1465.88       | -231.72      | -1434.923         | 149.52    | 996.477       | -188.33   | -1263.254     | 105.7     | 1232.051      | -137.87   | -1608.623     |
|                | 4           | 296.98    | 1331.437      | -54.22    | -395.538      | 146.48            | 621.373       | -83.96       | -502.244          | 19.96     | 212.619       | -123.73   | -620.676      | -144.33   | -1456.141     | -243.14   | -2305.685     |
|                | 5           | 81.14     | 407.717       | -40.38    | -218.285      | 34.15             | 203.276       | -59.34       | -248.381          | 65        | 259.46        | 4.78      | -78.742       | 74.2      | 299.303       | 32.99     | -49.847       |
|                | 6           | 61.57     | 328.042       | -67.84    | -320.795      | 56.1              | 239.003       | -36.46       | -214.466          | 16.98     | 173.382       | -54.29    | -186.382      | 12.57     | 201.013       | -37.96    | -166.01       |
|                | 7           | 67.82     | 320.601       | -61.59    | -328.229      | 36.46             | 214.468       | -56.1        | -238.998          | 54.29     | 186.384       | -16.97    | -173.383      | 37.96     | 166.009       | -12.57    | -201.018      |
|                | 8           | 40.36     | 218.109       | -81.16    | -407.892      | 59.34             | 248.38        | -34.14       | -203.273          | -4.78     | 78.743        | -65       | -259.461      | -32.99    | 49.845        | -74.2     | -299.306      |
|                | 9           | -81.29    | -408.1        | 40.17     | 217.744       | -34.15            | -203.29       | 26.45        | 248.301           | -04.99    | -259.430      | -4.78     | 186.775       | -74.19    | -299.250      | -32.98    | 49.914        |
|                | 11          | -67.84    | -320.778      | 61.55     | 327.98        | -36.46            | -214 465      | 56.1         | 239 001           | -54.29    | -186 383      | 16.97     | 173 385       | -37.96    | -165 986      | 12.58     | 201.05        |
|                | 12          | -40.39    | -218,288      | 81.12     | 407.639       | -59.34            | -248.378      | 34.15        | 203.276           | 4.78      | -78,741       | 64.99     | 259.464       | 33        | -49.822       | 74.21     | 299.339       |
|                | 13          | -53.85    | -392.174      | 297.51    | 1336.124      | -83.97            | -502.276      | 146.47       | 621.338           | -123.72   | -620.633      | 19.97     | 212.675       | -243.12   | -2305.471     | -144.3    | -1455.835     |
|                | 14          | -348.81   | -2523.265     | 314.36    | 2198.392      | -231.73           | -1434.939     | 236.04       | 1465.849          | -188.33   | -1263.079     | 149.51    | 996.672       | -137.84   | -1608.147     | 105.73    | 1232.588      |
|                | 15          | -314.57   | -2199.947     | 348.61    | 2521.855      | -236.05           | -1465.903     | 231.72       | 1434.891          | -149.52   | -996.448      | 188.32    | 1263.296      | -105.69   | -1231.928     | 137.88    | 1608.797      |
|                | 16          | -297      | -1331.627     | 54.19     | 395.27        | -146.47           | -621.371      | 83.96        | 502.246           | -19.96    | -212.616      | 123.72    | 620.681       | 144.34    | 1456.182      | 243.15    | 2305.743      |
|                | 17          | 1292.54   | 69459.628     | 3450.81   | 70767.061     | 160.82            | -975.367      | 1403.43      | -15222.152        | 1405.74   | -47975.176    | 1674.42   | -55840.642    | -587.9    | -25212.448    | -385.05   | -30365.087    |
|                | 18          | 607.19    | 35777.515     | 508.17    | 32927.454     | 1079.48           | -4460.798     | 1003.42      | -10200.914        | -697.97   | -28397.864    | -1051.41  | -31832.328    | -3172.93  | -27538.553    | -3455.37  | -29483.211    |
|                | 19          | 508.73    | 32930.634     | 607.48    | 35778.617     | 1003.4            | -10202.967    | 1079.45      | -4461.695         | -1051.44  | -31833.858    | -697.97   | -28398.372    | -3455.54  | -29484.803    | -3172.98  | -27539.158    |
|                | 20          | 3450.61   | 70758.269     | 1292.59   | 69453.881     | 1403.41           | -15227.002    | 160.8        | -978.958          | 1674.41   | -55844.822    | 1405.71   | -47977.898    | -385.35   | -30368.064    | -588.15   | -25214.403    |

|                |            |           |                   | Shear Wall Results From ETABS for Case 2 Wind |               |                   |               |           |                   |           |               |           |               |           |               |           |               |
|----------------|------------|-----------|-------------------|-----------------------------------------------|---------------|-------------------|---------------|-----------|-------------------|-----------|---------------|-----------|---------------|-----------|---------------|-----------|---------------|
|                |            |           | Bas               | se                                            |               |                   | Leve          | el 15     |                   |           | Leve          | 28        |               | Level 29  |               |           |               |
| Wind Direction | Shear Wall | e         | =+0.15B           | e                                             | e=-0.15B      | e                 | =+0.15B       | e         | =-0.15B           | e=        | +0.15B        | e         | =-0.15B       | e=        | +0.15B        |           | e=-0.15B      |
|                |            | Shear (k) | Moment (k-ft)     | Shear (k)                                     | Moment (k-ft) | Shear (k)         | Moment (k-ft) | Shear (k) | Moment (k-ft)     | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|                | 1          | 272.96    | 4773.592          | 499.11                                        | 6198.151      | 99.94             | 745.216       | 436.45    | 2369.269          | -142.71   | 367.031       | -132.77   | 356.105       | 180.2     | 3677.967      | 393.95    | 4477.43       |
|                | 2          | 930.58    | 30411.439         | 1176.76                                       | 36978.89      | 656.23            | 4879.989      | 1302.53   | 9234.28           | -634.14   | -9305.835     | -496.74   | -7758.12      | 299.11    | 9763.596      | 831.96    | 14085.779     |
|                | 3          | 930.58    | 30411.439         | 1176.76                                       | 36978.891     | 656.23            | 4879.989      | 1302.53   | 9234.281          | -634.14   | -9305.836     | -496.74   | -7758.126     | 299.11    | 9763.595      | 831.96    | 14085.774     |
|                | 4          | 272.96    | 4773.592          | 499.11                                        | 6198.151      | 99.94             | /45.216       | 436.45    | 2369.27           | -142.71   | 367.027       | -132.78   | 356.086       | 180.2     | 3677.965      | 393.97    | 44/7.416      |
|                | 5          | 270.48    | 4370.747          | 405.24                                        | 5186 222      | 245.56            | 1261.76       | 271.67    | 18001.346         | -217.02   | -1/57.564     | -199.29   | -1511.708     | 105 27    | 1031.091      | 240.45    | 2150.707      |
|                | 7          | 370.48    | 4747.905          | 405.24                                        | 5186 223      | 245.56            | 1261.76       | 371.07    | 1899 778          | -279.51   | -1853.191     | -244.57   | -1572.414     | 106.27    | 1571.385      | 213.50    | 2161.305      |
|                | 8          | 304.04    | 4570.748          | 381.3                                         | 5139,775      | 194.65            | 1143.306      | 332.23    | 1801.349          | -217.02   | -1757.384     | -199.29   | -1511.765     | 153       | 1631.896      | 246.49    | 2196.79       |
|                | 9          | 381.3     | 5139.775          | 304.04                                        | 4570.747      | 332.23            | 1801.349      | 194.65    | 1143.306          | -199.29   | -1511.783     | -217.02   | -1757.467     | 246.51    | 2196.863      | 152.98    | 1631.732      |
|                | 10         | 405.24    | 5186.224          | 370.48                                        | 4747.904      | 371.67            | 1899.779      | 245.56    | 1261.76           | -244.98   | -1572.422     | -279.51   | -1853.194     | 213.57    | 2161.4        | 106.26    | 1571.378      |
|                | 11         | 405.24    | 5186.224          | 370.48                                        | 4747.904      | 371.67            | 1899.779      | 245.56    | 1261.76           | -244.97   | -1572.422     | -279.51   | -1853.192     | 213.57    | 2161.399      | 106.26    | 1571.37       |
|                | 12         | 381.3     | 5139.775          | 304.04                                        | 4570.747      | 332.23            | 1801.349      | 194.65    | 1143.306          | -199.29   | -1511.767     | -217.02   | -1757.385     | 246.51    | 2196.891      | 153       | 1631.877      |
|                | 13         | 499.11    | 6198.151          | 272.96                                        | 4773.592      | 436.45            | 2369.271      | 99.94     | 745.216           | -132.78   | 355.98        | -142.71   | 366.467       | 394.07    | 4479.88       | 180.58    | 3690.111      |
|                | 14         | 1176.76   | 36978.895         | 930.58                                        | 30411.438     | 1302.53           | 9234.287      | 656.23    | 4879.992          | -496.76   | -7758.081     | -634.14   | -9305.848     | 832.03    | 14086.48      | 299.13    | 9763.656      |
|                | 15         | 1176.76   | 36978.894         | 930.58                                        | 30411.436     | 1302.53           | 9234.287      | 656.23    | 4879.993          | -496.76   | -7758.088     | -634.14   | -9305.882     | 832.03    | 14086.498     | 299.12    | 9763.746      |
|                | 16         | 499.11    | 6198.151          | 272.96                                        | 4773.591      | 436.45            | 2369.271      | 99.94     | 745.217           | -132.78   | 356.088       | -142.71   | 367.032       | 394       | 4477.585      | 180.21    | 3678.015      |
|                | 17         | 1719.99   | 70120.407         | -1719.99                                      | -70119.816    | 1089.12           | 1155.427      | -1089.12  | -1154.78          | 74.62     | -6924.613     | -75.39    | 6942.536      | 692.92    | 1012.887      | -693.6    | -964.682      |
|                | 18         | 505.85    | 24420.828         | -505.85                                       | -24420.255    | 59.49             | 83.102        | -59.49    | -82.5             | -359.91   | -4702.081     | 359.8     | 4704.045      | -123.71   | -1003.484     | 124.13    | 1006.913      |
|                | 20         | -303.65   | -24420.048        | 1719.99                                       | 70120 769     | -35.45            | -02.521       | 1089 12   | 1155 726          | -74 74    | 6927,406      | -555.54   | -4701.004     | -693.03   | -1004.202     | -125.55   | -1002.815     |
| -              | 20         | Level 30  |                   | 130                                           | 70120.705     | 1005.12           | Leve          | 1005.12   | 1155.720          | 74.74     | Leve          | 150       | 0527.014      | 055.05    | leve          | 151       | 1005.500      |
| N/S            | Shear Wall | e         | e=+0.15B e=-0.15B |                                               |               | e=+0.15B e=-0.15B |               |           | e=+0.15B e=-0.15B |           |               | =-0.15B   | e=            | =+0.15B   |               | e=-0.15B  |               |
|                |            | Shear (k) | Moment (k-ft)     | Shear (k)                                     | Moment (k-ft) | Shear (k)         | Moment (k-ft) | Shear (k) | Moment (k-ft)     | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) | Shear (k) | Moment (k-ft) |
|                | 1          | 1.49      | 673.277           | 236.24                                        | 1830.765      | 32.63             | 137.888       | 190.36    | 908.932           | 12.49     | -878.836      | 114.08    | -296.517      | -93.61    | -553.922      | -26.4     | 13.827        |
|                | 2          | 435.68    | 8636.927          | 879.72                                        | 11819.818     | 261.46            | 1115.858      | 581.01    | 3124.922          | 47.62     | -5988.101     | 284.9     | -4414.421     | -395.73   | -8512.946     | -227.75   | -6570.426     |
|                | 3          | 435.68    | 8636.926          | 879.72                                        | 11819.813     | 261.46            | 1115.857      | 581.01    | 3124.918          | 47.62     | -5988.1       | 284.9     | -4414.419     | -395.73   | -8512.946     | -227.75   | -6570.424     |
|                | 4          | 1.49      | 673.285           | 236.25                                        | 1830.805      | 32.63             | 137.888       | 190.36    | 908.929           | 12.49     | -878.836      | 114.08    | -296.516      | -93.61    | -553.922      | -26.4     | 13.83         |
|                | 5          | 172.5     | 1411.701          | 253.92                                        | 1832.274      | 77.72             | 352.173       | 141.7     | 662.378           | 39.9      | -742.074      | 82.37     | -505.727      | -113.41   | -1420.018     | -85.12    | -1179.969     |
|                | 5          | 155.22    | 1354.721          | 241.88                                        | 1790.486      | 98.85             | 388.115       | 162.04    | 699.092           | 11.75     | -797.361      | 61.58     | -546.699      | -161.07   | -1499.482     | -126.25   | -1246.912     |
|                | 8          | 172.5     | 1334.72           | 241.00                                        | 1832 273      | 77 72             | 352 172       | 1/11 7    | 662 375           | 39.9      | -737.30       | 82.37     | -505 725      | -101.07   | -1433.482     | -120.23   | -1240.909     |
|                | 9          | 253.93    | 1832.269          | 172.55                                        | 1411.801      | 141.7             | 662.377       | 77.72     | 352.176           | 82.37     | -505.727      | 39.9      | -742.081      | -85.12    | -1179.971     | -113.41   | -1420.034     |
|                | 10         | 241.88    | 1790.465          | 155.22                                        | 1354.759      | 162.04            | 699.092       | 98.85     | 388.12            | 61.58     | -546.698      | 11.75     | -797.364      | -126.25   | -1246.913     | -161.07   | -1499.494     |
|                | 11         | 241.88    | 1790.463          | 155.22                                        | 1354.751      | 162.04            | 699.091       | 98.85     | 388.116           | 61.58     | -546.698      | 11.75     | -797.362      | -126.25   | -1246.912     | -161.07   | -1499.491     |
|                | 12         | 253.92    | 1832.256          | 172.51                                        | 1411.732      | 141.7             | 662.377       | 77.72     | 352.174           | 82.37     | -505.726      | 39.9      | -742.075      | -85.12    | -1179.97      | -113.41   | -1420.027     |
|                | 13         | 236.23    | 1830.572          | 1.36                                          | 672.17        | 190.36            | 908.933       | 32.63     | 137.894           | 114.08    | -296.52       | 12.49     | -878.848      | -26.41    | 13.817        | -93.62    | -553.996      |
|                | 14         | 879.73    | 11819.762         | 435.71                                        | 8637.174      | 581.01            | 3124.917      | 261.46    | 1115.866          | 284.9     | -4414.444     | 47.62     | -5988.138     | -227.75   | -6570.489     | -395.73   | -8513.051     |
|                | 15         | 879.73    | 11819.739         | 435.7                                         | 8637.055      | 581.01            | 3124.916      | 261.46    | 1115.861          | 284.9     | -4414.443     | 47.62     | -5988.132     | -227.75   | -6570.487     | -395.73   | -8513.042     |
|                | 16         | 236.25    | 1830.791          | 1.51                                          | 673.323       | 190.36            | 908.933       | 32.63     | 137.891           | 114.08    | -296.518      | 12.49     | -878.839      | -26.41    | 13.829        | -93.61    | -553.934      |
|                | 17         | 720.04    | 845.092           | -720.17                                       | -847.799      | 428.38            | -4364.006     | -428.39   | 4362.683          | 119.68    | -2750.215     | -119.67   | 2748.924      | 80.62     | -1758.33      | -80.69    | 1757.417      |
|                | 18         | -32.89    | - /88.063         | 33.1                                          | 789.439       | -24.03            | -1/82.208     | 24.02     | 1781.396          | -110.37   | -1159.800     | 116.35    | 1159.195      | -98.01    | -080.731      | 97.93     | 680.975       |
|                | 20         | -720.08   | -845 567          | 719.97                                        | 845 292       | -428.38           | 4363 809      | 428.29    | -1/02.34/         | -119.50   | 27/9 987      | 119.69    | -1100.030     | -80.63    | 1758 171      | -58.03    | -000.870      |
|                | 20         | -720.00   | -040.007          | 113.37                                        | 045.255       | -420,30           | 4303.003      | 420.33    | -4303.713         | -115.07   | 2143.301      | 113.05    | -2730.124     | -00.05    | 1/30.1/1      | 00.00     | -1130.230     |